Subject: Re: Challenging question - array curve fitting Posted by Craig Markwardt on Mon, 23 Apr 2007 02:49:56 GMT

View Forum Message <> Reply to Message

Sorry for neglecting your post for so long!

```
"Qing" <csis@bigpond.net.au> writes:
> Hello Craig,
```

- > Thanks a lot for your comments and tips. It is intriguing for
- > "grouping multiple time series into a single large vector...". I can
- > manage to transform/ reform the data array into a large vector, but
- > my brain just can't think of a way to model the concatenated vector
- > independently. For example, I am using a Gaussian curve model with 3
- > fitting parameters for each curve. Typically Nx=Ny=128 and the
- > number of time points Nt=60. The thing is that my computer has two
- > CPUs, and it only uses about 50% total CPU when fitting the curve by
- > looping through each pixel.

Your model function would still need to compute each light curve separately, which may involve a loop. But, for example, you could loop over time sample instead of light curve number, and in each iteration compute 128x128 model values at once (or fewer).

Example:

```
; Compute NX x NY x NT light curve samples
; Model is simple linear P0 + P1*T
Parameters are arranged like this:
   P0 = P(0:(NX*NY-1)) ;; For each pixel
                       ;; For each pixel
   P1 = P(NX*NY:*)
function lcmod, t, p, nx=nx, ny=ny
 ntot = nx*ny
 p0 = reform(p(0:ntot-1),nx,ny)
 p1 = reform(p(ntot-1:*),nx,ny)
 nt = n_elements(t)
 model = fltarr(nx,ny,nt)
 for i = 0, nt-1 do model(0,0,i) = p0 + p1*t(i)
 return, model
end
```

This only works because NX*NY is much larger than NT.

- > I though usually array operation is more efficient than looping
- > throug all elements individually, but I was not sure if that is the
- > case for a non-linear fitting task. Or at least, using array
- > operation can get better use of the CPUs upto 100%. Do you thing
- > using a large vector would be as efficient as using array?

It all depends on how much work is done per iteration of the loop. If you can accomplish a lot of work in one iteration, then you will not save by vectorizing the loop. Since MPFIT has a lot of set-up and tear-down expenses, then I suspect you could indeed gain by grouping a several time series together.

- > Why does "the number of arithmetic operations required to perform
- > the fit scales as the number of pixels *cubed*"?, I thought it would
- > be a linear relation if using array just like looping through all
- > pixels one-by-one. Am I missing something?

Actually it scales as M N^2 where M is the number of data points and N is the number of parameters. However, since this example involves grouping independent light curves with independent parameters into one block, M is also proportional to N, hence an overall N^3 dependence.

Hope you succeeded! Craig

Craig B. Markwardt, Ph.D. EMAIL: craigmnet@REMOVEcow.physics.wisc.edu Astrophysics, IDL, Finance, Derivatives Remove "net" for better response