Subject: Re: Challenging question - array curve fitting Posted by Qing on Tue, 24 Apr 2007 12:49:25 GMT

View Forum Message <> Reply to Message

```
On Apr 23, 12:49 pm, Craig Markwardt
<craigm...@REMOVEcow.physics.wisc.edu> wrote:
> Sorry for neglecting your post for so long!
>
  "Qing" <c...@bigpond.net.au> writes:
>> Hello Craig,
>
>> Thanks a lot for your comments and tips. It is intriguing for
   "grouping multiple time series into a single large vector...". I can
>> manage to transform/ reform the data array into a large vector, but
>> my brain just can't think of a way to model the concatenated vector
>> independently. For example, I am using a Gaussian curve model with 3
>> fitting parameters for each curve. Typically Nx=Ny=128 and the
>> number of time points Nt=60. The thing is that my computer has two
>> CPUs, and it only uses about 50% total CPU when fitting the curve by
>> looping through each pixel.
>
> Your model function would still need to compute each light curve
> separately, which may involve a loop. But, for example, you could
> loop over time sample instead of light curve number, and in each
 iteration compute 128x128 model values at once (or fewer).
>
> Example:
 ; Compute NX x NY x NT light curve samples
> ; Model is simple linear P0 + P1*T
 ; Parameters are arranged like this:
     P0 = P(0:(NX*NY-1)) ;; For each pixel
     P1 = P(NX*NY:*)
                        ;; For each pixel
> ;
> function lcmod, t, p, nx=nx, ny=ny
   ntot = nx*ny
   p0 = reform(p(0:ntot-1),nx,ny)
>
   p1 = reform(p(ntot-1:*),nx,ny)
>
   nt = n_elements(t)
   model = fltarr(nx,ny,nt)
>
   for i = 0, nt-1 do model(0,0,i) = p0 + p1*t(i)
   return, model
>
> end
  This only works because NX*NY is much larger than NT.
>
>
>> I though usually array operation is more efficient than looping
>> throug all elements individually, but I was not sure if that is the
>> case for a non-linear fitting task. Or at least, using array
>> operation can get better use of the CPUs upto 100%. Do you thing
```

>> using a large vector would be as efficient as using array? > > It all depends on how much work is done per iteration of the loop. If > you can accomplish a lot of work in one iteration, then you will not > save by vectorizing the loop. Since MPFIT has a lot of set-up and > tear-down expenses, then I suspect you could indeed gain by grouping a > several time series together. > >> Why does "the number of arithmetic operations required to perform >> the fit scales as the number of pixels *cubed*"?, I thought it would >> be a linear relation if using array just like looping through all >> pixels one-by-one. Am I missing something? > > Actually it scales as M N^2 where M is the number of data points and N > is the number of parameters. However, since this example involves > grouping independent light curves with independent parameters into one > block, M is also proportional to N, hence an overall N³ dependence. > Hope you succeeded! > Craig Hi Craig, Champion! Thanks you soooooo much for the tips. I will try it to see

Champion! Thanks you soooooo much for the tips. I will try it to see if this can speed up my curve fittings!

Cheers :-))