
Subject: Re: structure arguments sometimes behave like value types - why?
Posted by JD Smith on Mon, 23 Apr 2007 17:31:17 GMT
View Forum Message <> Reply to Message

On Fri, 20 Apr 2007 13:26:42 -0700, justspam03 wrote:

>
> erg, addendum.
> Admittedly, in the second case the structure is not a function
> argument but a return value - I still assumed that it doesn't matter
> in the case (just as it doesn't for pointers or object references).
> Does it?
> Thanks again

In the second case, you are returning a copy of the structure from
inside the object, and then modifying that copy. The copy actually
occurred at the statement "self.val". Had you instead used a pointer
to a structure, ala:

 pro structtest__define
 	obj = { STRUCTTEST ,	val:	ptr_new({nullableString}) }
 end

 function structtest::getStruct
 	return, self.val
 end

you could then return that *pointer*, and then modify directly the
object's internal copy. Note that you're still returning a copy of
something with:

 b=x->getStruct()

but that something in this case is a (lightweight) copy of the pointer
to the internal structure, rather than a full copy of the structure.
However, just as it's dangerous to hand out too many sets of house
keys, it's often not a good idea to pass pointers to your important
internal data out to whomever may happen by.

Note that objects are similar to pointers in that they are (always,
unlike C++) lightweight references to variables on the global IDL
memory heap (it may help if you call them "object pointers"). They
are accessed differently, but otherwise serve a similar function: you
can make many copies, all of which refer to the same object.

JD

Page 1 of 1 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24444&goto=53723#msg_53723
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=53723
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

