Subject: Re: position matching
Posted by cmancone on Tue, 15 May 2007 14:36:13 GMT

View Forum Message <> Reply to Message

Yes, | read that article. However, it doesn't quite translate well

into what | need. It presents two methods, one using arrays, the
other using a Delaunay triangulation (DT). For my purposes (20,000
stars) the array method won't work - it requires way too much memory
(I pondered a similar solution myself). That leaves the DT method.
There's two problems with this. First, | don't just need the closest
neighbor, | need the closest neighbor within a certain distance.
Persumably, this is easily solved with a properly placed WHERE or IF
statement. The bigger problem, however, is that | am matching up two
separate lists, and | can't have stars on one list matching up stars

on the same list. The DT doesn't make any distinction between stars
as far as | can tell. You give it one combined list, and it finds the
closest stars no matter where they come from, which is a problem.
I've been trying to figure out just how the DT works, so | can
determine if it is possible to disentangle the two star lists or not.

It's a bit confusing though, and | have yet to determine if it will

work for my purposes.

On May 15, 10:14 am, Paolo Grigis <pgri...@astro.phys.ethz.ch> wrote:

> Seems to be a recurring theme... here's a nice article:
>

> http://www.dfanning.com/code_tips/slowloops.html

>

> Ciao,

> Paolo

>

> cmanc...@ufl.edu wrote:

>> Hi everyone,

>> A common task | have to do is take two lists of stars with x & y

>> positions and match up the closest stars within a certain radius (so
>> that each star has at most one match, that one being the best match).
>> A long time ago | wrote some code to do this that gets the job done,
>> put probably not in the fastest way. It just uses a for loop over one
>> of the lists and uses a where to search for the closest star to each

>> star on the other list. Most of the time this is more than adequate,

>> but anytime my star lists get around 10000-20000 stars each (which
>> happens on a not-so irregular basis) the program turns into quite a
>> beast and takes its sweet time (i.e. a minute or two). Granted, this
>> isn't exactly research-stopping time delays, but I'm sure that with a
>> well thought-out algorithm, the execution time could be pulled down to
>> a handful of seconds. The problem is, | have yet to come up with a
>> well thought-out algorithm. I'm sure I'm not the only one who has run
>> into this, so | was hoping there might be someone else out there that
>> has dealt with the same thing, and knows a better way.

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6086
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24574&goto=54005#msg_54005
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=54005
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> -Conor

Page 2 of 2 ---- Cenerated from conp. |l ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

