Subject: Re: position matching
Posted by JD Smith on Wed, 16 May 2007 20:47:16 GMT

\Y,

iew Forum Message <> Reply to Message

On Tue, 15 May 2007 07:36:13 -0700, cmancone wrote:

VVVVVVVVVVVYVYVYVYVYV

Yes, | read that article. However, it doesn't quite translate well into

what | need. It presents two methods, one using arrays, the other using a
Delaunay triangulation (DT). For my purposes (20,000 stars) the array
method won't work - it requires way too much memory (I pondered a similar
solution myself). That leaves the DT method. There's two problems with
this. First, | don't just need the closest neighbor, | need the closest
neighbor within a certain distance. Persumably, this is easily solved with

a properly placed WHERE or IF statement. The bigger problem, however, is
that | am matching up two separate lists, and | can't have stars on one

list matching up stars on the same list. The DT doesn't make any
distinction between stars as far as | can tell. You give it one combined

list, and it finds the closest stars no matter where they come from, which

is a problem. I've been trying to figure out just how the DT works, so |

can determine if it is possible to disentangle the two star lists or not.

It's a bit confusing though, and | have yet to determine if it will work

for my purposes.

The DT is just a cheeky way to organize points in 2D (and higher

d

imension, but less efficiently). That algorithm uses the fact that

the DT graph has as a sub-graph the nearest neighbors. Then you can
start with your star of interest, and work your way out to nearby

stars along the DT lines, to find the Nth nearest neighbor, by
comparing a small number of stars. For matching two lists, this, as
you pointed out, is awkward.

As Paolo noted, the array method can be made to work by dividing it
into "fits in memory" sized chunks. As also mentioned on the page you
read, such a method doesn't necessarily mean you're doing it the most
efficient way (just maximizing the brute force throughput). For
searching 20,000 stars, however, the segmented brute force approach
with arrays will probably work fine. | could do 20000x20000 in under

a
a

minute on my (slowish) machine with 2GB. | suspect if you get just
few min for similar sizes with a purely loop solution, your machine

is much faster than mine. Here's an implementation. Tune 'chunk’,
which limits the size of arrays to compare, to optimize speed.

n
X

y

Match stars in one list to another, with brute force array techniques
1=20000

1=randomu(sd,n1)

1=randomu(sd,n1)

Page 1 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24574&goto=54080#msg_54080
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=54080
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

n2=nl
x2=randomu(sd,n2)
y2=randomu(sd,n2)

t=systime(1)

;» Divide the problem into manageable chunks: use [x2,y2] in full
chunk=1.e6 ;largest number of elements to check at once
nchunk=ceil(n1/(float(chunk)/n2))>2

nlpiece=ceil(float(nl)/nchunk)

print,nchunk,” Chunks of size ',nlpiece,'x’,n2
max_r=.001 ;maximum allowed radius

mpos=lonarr(nl)
for i=0L,nchunk-1 do begin
low=n1lpiece*i
high=(nlpiece*(i+1))<(nl-1)
cnt=high-low+1
d=(rebin(x2,n2,cnt,/SAMPLE)- $
rebin(transpose(x1[low:high]),n2,cnt,/SAMPLE))"2+ $
(rebin(y2,n2,cnt,/SAMPLE)- $
rebin(transpose(yl[low:high]),n2,cnt,/SAMPLE))"2
void=min(d,DIMENSION=1,p)
mpos[low]=p mod n2
wh=where(sqrt(d[p]) gt max_r,cnt)
if cnt gt 0 then mpos[wh]=-1L
endfor

print,systime(1)-t

That works well enough, but is certainly not optimal. It uses the

full set of [x2,y2] stars, comparing them against chunks of stars from
the list [x1,y1] at a time. All stars on the target list are compared

to all stars on the search list.

In all cases like this, the best approach to speed up the calculation

is to think to yourself "how can | reduce the number of possible

points which must be matched, *before* | commence the matching”. For
closest match in a single set of stars, this led to the DT method. In

this case, you have set a natural scale to the problem, max_r, which

will be *very* useful, allowing you to subdivide and conquer. The
argument is as follows. If you bin the search stars into bins of size

Page 2 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

2*max_r, the closest point to a given target star [x,y], which is at
least as close as max_r in radius, *must* fall into one of 4 bins (the
bin which [x,y] is in, and the three bins to the upper-left,
upper-right, lower-left, or lower-right of it, depending on where it
falls in its bin). If there is no star in any of those bins, then

there is no star within max_r.

I'll use HIST_ND to bin the search stars into a large grid. Then,

instead of searching *all* points for the closest, I'll only search

ones which fell in that bin (conveniently indexed using
REVERSE_INDICES), and the relevant 3 adjacent bins (depending on
location within the bin). You can use the same "brute-force" array

tricks here *within* the bin, but of course they are infinitely

faster, as you've pre-trimmed out the vast majority of possible

matches. Sprinkle in a few more vectorizing HISTOGRAM tricks (in
particular the DUAL HISTOGRAM method, as described in the DRIZZLE
discussion), and you get the code below.

With this code, matching 20000x20000 points takes almost no time at
all, 0.1s. | can match 1,000,000 vs. 1,000,000 stars in roughly 4.5
seconds, with a strong dependence on the initial binning size (too
coarse, and bins will have too many points to fit in memory, too
sparse, and you'll have too many empty bins). If your maximum radius
is tiny (compared to the maximum distance between stars), it probably
pays just to make larger bin sizes, and then weed out the ones which
are "too far" post-facto (I've left that undone -- a simple WHERE will
suffice). If your maximum radius is large, the bin size will be too
coarse, and you won't have removed many for a given target
search.... you'll be searching many tens or hundreds of thousands of
stars per bin, and be right back in the same sort of memory trouble
you had originally.

| should emphasize that this code does *not* guarantee that the
closest match itself is returned, only making the guarantee that *if*
the closest match is within 1/2 of the bin size, then it is correctly
returned. For this problem, this sets a minimum bin size: 2 * the max
search radius. You can of course go to larger bin sizes (and you may
want to if your stars are sprinkled very sparsely over the grid, or

you require a very precise match, such that the histogram could grow
excessively large). If you go smaller you risk missing the correct
star.

: Match stars in one list to another, within some tolerance.
; Pre-bin into a 2D histogram, and use DUAL HISTOGRAM matching to select

Page 3 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

n1=1000000 ;number of stars
x1l=randomu(sd,nl) ;points to find matches near
yl=randomu(sd,nl)

n2=nl
x2=randomu(sd,n2) ;points to search in
y2=randomu(sd,n2)

tl=systime(1)

max_r=.0005 :maximum allowed radius for a match
bs=2*max_r ;this is the smallest binsize allowed
h=hist_nd([1#x2,1#y2],bs,MIN=0,MAX=1,REVERSE_INDICES=ri)
bs=bs[0]

d=size(h,/DIMENSIONS)

;; Bin location of X1,Y1 in the X2,Y2 grid
xoff=x1/bs & yoff=yl/bs

xbin=floor(xoff) & ybin=floor(yoff)

bin=(xbin + d[0]*ybin)<(d[0]*d[1]-1L) ;The bin it's in

;; We must search 4 bins worth for closest match, depending on
;; location within bin (towards any of the 4 quadrants).
xoff=1-2*((xoff-xbin) It 0.5) ;add bin left or right
yoff=1-2*((yoff-ybin) It 0.5) ;add bin down or up

min_pos=make_array(nl,VALUE=-1L)
min_dist=fltarr(n1,/NOZERO)

for i=0,1 do begin ;; Loop over 4 bins in the correct quadrant direction
for j=0,1 do begin
b=0L>(bin+i*xoff+j*yoff*d[0])<(d[0]*d[1]-1) ;current bins (offset)

;; Dual HISTOGRAM method, loop by repeat count in bins
h2=histogram(h[b],MIN=1,REVERSE_INDICES=ri2)

;; Process all bins with the same number of repeats >= 1
for k=0L,n_elements(h2)-1 do begin
if h2[k] eq O then continue
these_bins=ri2[ri2[K]:ri2[k+1]-1] ;the points with k+1 repeats in bin

if k eq O then begin ; single point (n)
these_points=ri[ri[b[these_bins]]]
endif else begin ; range over k+1 points, (n x k+1)
these_points=ri[ri[rebin(b[these_bins],h2[k],k+1,/SAMPLE)]+ $
rebin(lindgen(1,k+1),h2[k],k+1,/SAMPLE)]
these_bins=rebin(temporary(these_bins),h2[k],k+1,/SAMPLE)

Page 4 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

endelse

dist=(x2[these_points]-x1[these_bins])"2 + $
(y2[these_points]-yl[these bins])"2

if kK gt O then begin ;multiple point in bin: find closest
dist=min(dist, DIMENSION=2,p)
these_points=these_points[p] ;index of closest point in bin
these_bins=ri2[ri2[K]:ri2[k+1]-1] ;original bin list

endif

;; See if a minimum is already set
set=where(min_pos|[these_bins] ge 0, nset, $
COMPLEMENT=unset, NCOMPLEMENT=nunset)

if nset gt 0 then begin
;; Only update those where the new distance is less
closer=where(dist[set] It min_dist[these_bins[set]], cnt)
if cnt gt O then begin
set=set[closer]
min_pos[these_bins[set]]=these_points[set]
min_dist[these_bins[set]]=dist[set]
endif
endif

if nunset gt 0 then begin ;; Nothing set, closest by default
min_pos[these_bins[unset]]=these_points[unset]
min_dist[these_bins[unset]]=dist[unset]
endif
endfor
endfor
endfor

print,systime(1)-t1

Page 5 of 5 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

