Subject: Re: fast for loop
Posted by JD Smith on Mon, 11 Jun 2007 19:00:36 GMT

View Forum Message <> Reply to Message

On Mon, 11 Jun 2007 07:01:36 -0700, Conor wrote:

> On Jun 10, 10:55 pm, David Fanning <n...@dfanning.com> wrote:

>> airy.ji...@gmail.com writes:

>>> Sometimes we could use some special function to avoid them.Sometimes
>>> we could use more lines of code to avoid them.

>>> There are many skills to make the program more efficient and fast.But
>>> in fact loops are ineluctable,the key is how

>>> to use it.

>>> Anyway,|l agree with you ,Mark.IDL indeed need to improve its

>>> efficiency on the loops and some arithmatic computing.IDL6.4

>>> shows a lot of features which can be proved thier hard working for
>>> jt.At least 50% elevation of the drawing speed and new

>>> OpenGL Object indicates an nice future of the IDL.It's wothy for us to
>>> waiting new edtion of the IDL which can give us some

>>> fast loops,™ "

>>

>> Yeah, and life would be more interesting if pigs could fly.

>>

>> |f fast loops are what you were after, I'd guess you would

>> design a language that looked very much like C or FORTRAN.

>> |DL is something different and | don't see much point wishing

>> it wasn't.

\Y

Granted, it would be nice to have fast for loops (for those times
where you really just have to use one). However, | do also enjoy the
challenge of having to come up with fun new ways to avoid them.
There's nothing more satisfying than taking a couple lines of code
wrapped inside a for loop and turning it into one line of convoluted
array operations. Normally | have no artistic talen what-so-ever, so
coming up with confusing idl code in order to avoid for loops is my
way of expressing my creative talents :)

V VVVVYVYVYV

It's funny because it's true. Some of the tricks we resort to to get good
performance out of IDL fall in the category of elegant. Most do not.

I've long advocated a specially compiled for loop which drops essentially
all the features of the IDL interpreter, which no doubt are what make a
single round trip through the for loop so slow (warning: this is informed
speculation). This "optimized side loop", which might get enabled with a
compiler flag, would have some inherent inflexibility, but should offer
much better performance.

JD

Page 1 of 1 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24748&goto=54411#msg_54411
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=54411
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

