Subject: Re: memory for pixmaps: big vs many
Posted by Jim Pendleton, ITT Vi on Thu, 21 Jun 2007 22:12:36 GMT

View Forum Message <> Reply to Message

You may find it worth testing whether or not you even need

pixmaps since physical memory transfer to the card is generally
fast enough these days to display "appropriately sized" animations
smoothly, and will also generally provide you with significantly more
room to save frames, assuming you don't induce a paging condition.

That is, if you have an RGB image cube in memory (and it's not in
a paging condition) the following action (in Object Graphics notation)

olmage->SetProperty, $
Data = Reform(Frames[*, *, *, CurrentFrame])
oDrawWindow->Draw

can be comparable to pixmap display speed. On more modern
hardware and "reasonable" image sizes, you can often exceed the
refresh rate of the graphics card using this technique.

| haven't tested this theory with the TV command in Direct Graphics,
SO your mileage may vary.

Alternatively, in Object Graphics you can pre-load a series of

IDLgrimage objects into models then use the IDLgrModel's SelectTarget
property to specify which to draw. The overhead here is that the ::Draw
method

must be called once on each image for it to be loaded into graphics memory,
making the initial display of each image sequence slow-ish; but subsequent
displays will be much faster. Unlike the physical memory option, though,
you'll be limited to the size of the graphics memory; If you exceed this

limit, then parts of the graphics memory may be sent back to physical
memory and the OS then has the option of (shudder) paging them off

to disk, which will destroy any performance gain you may have hoped

to get.

Jim P.

"Richard Clark" <rclark@hindmost.lpl.arizona.edu> wrote in message
news:f5ej1bhggl@onion.ccit.arizona.edu...

In using offscreen pixmaps to preload a sequence of images for smooth
display in an animation you can run up against memory limitations in the
graphics hardware.

Two aproaches are to set up a very large pixmap that is
xsize*total_images by ysize and store the images along the x length

>
>
>
>
>
>
> of the pixmap,

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5828
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24829&goto=54597#msg_54597
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=54597
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

VVVVVVVVVVVVVVVVYVYVVYVYVYVYVYV

or
to set up total_images xsize by ysize pixmaps, one to an image.

The latter aproach gives your OS and graphics hardware more of a chance
to make use virtual memory. Works like a charm on my linux system while
the big pixmap movie loop hits the graphics card memory limit.

But a search through some discussion on the topic suggests that there
will likely be some OS and/or graphics card specific differences in
how well it works.

Does anyone have experience with this on multiple platforms and could
comment? For instance, any OS-wide generalizations that can be made,
or is it hopelessly graphics card dependent?

On a related note, the animation I'm interested in displaying is made
up of b&w images. So using an 8 bit rather than 24 bit mode should
make room for more images to be loaded in the card's memory.

Does using an 8 bit mode make room for 3x, 4x, or 1x times as many
images?

Richard Clark
rclark@lpl.arizona.edu

Page 2 of 2 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

