Subject: Re: zero-padding an array of arbitrary dimensionality (replacing execute in
vm)
Posted by Vince Hradil on Fri, 20 Jul 2007 13:34:11 GMT

View Forum Message <> Reply to Message

On Jul 19, 9:14 pm, JD Smith <jdsm...@as.arizona.edu> wrote:

>

On Thu, 19 Jul 2007 08:51:58 -0700, hradilv wrote:

>> | would like to zero-pad an array programmatically without knowing in
>> advance what the dimensionality is of the array.

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVYVYVYVYVYVYV

Position [1,1,1,....] can be expressed in 1D as:

ind=total(product((size(data,/dimensions))[0:1],/CUMULATIVE, /PRESERVE_TYPE),$
/PRESERVE_TYPE) + 1

Some other arbitrary position p=[p0,p1,p2,...,pn] can also be expressed:

d=shift(product(size(data,/dimensions),/CUMULATIVE,/PRESERVE _TYPE),1)
d[0]=1
ind_p=total(p*d,/PRESERVE_TYPE)

Note that this is the _one-dimensional_ position within the array, so it
can be used to access an arbitrary element without resorting to EXECUTE.

That said, assigning an array of greater than one dimension to this
position will *not* do what you intend. Only when using an explicit

list of indices on the left-hand side of an assignment (e.g.
array[x,y,z,...]=sub_array) will IDL invoke the rules to preserve the
structure of the inserted array. If a "one-dimensional” offset index is
used, only the first dimension will be preserved in this way, and the rest
will be silently ignored. Whatever to do?

To solve this, you need instead to calculate the indices of the full
sub-array itself, offset within the larger target array at starting

position p=[p0,p1,p2,...,pn]. This is a more general problem than zero
padding. Essentially you are computing an array of indices of an
arbitrarily sized rectangular (cube, hyper-cubic, etc.) "chunk" within a
larger array, of a given size and offset. This is a bit more complicated
than the above, but conceptually similar:

;; Compute indices of the "chunk"
ss=size(sub_array,/DIMENSIONS)
I=lindgen(ss)
inds=make_array(VALUE=p[0],ss)
d=product(size(data,/dimensions),/CUMULATIVE,/PRESERVE_TYPE)
ds=product(ss,/CUMULATIVE,/PRESERVE_TYPE)
for i=n_elements(d)-2,0,-1 do begin
inds+=(p[i+1]+l/ds[i])*d[i]

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3339
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24946&goto=54978#msg_54978
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=54978
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

VVVVVVVVVVVVVVYVVYVYVYVYVYV

[-=I/ds[i]*ds]i]
endfor
inds+=I

. Apply them
data[inds]=sub_array

This is essentially the calculation IDL does for you when you use the
subscripted assignment of unlike arrays. Too bad it doesn't expose that
functionality via some function. You might like to check first that the
sub-array can actually fit within the larger array, and warn or truncate

if not (for your case of padding with zeroes, this isn't a problem).

For those interested, this method works on the highest dimension
downward, (e.g. z, y, X in the 3D case), removing that dimension's
signature after it has been applied. E.g. a z position of 4 in the

sub_array, inserted at a z offset offset of 2, should have 6*(nx*ny)

added. It also demonstrates the trick HIST_ND uses to accomplish a very
similar task.

JD

Thanks everyone. Especially Mike and JD - this thread is definitely a
"keeper" for me.

Page 2 of 2 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

