
Subject: Re: Randomize array order
Posted by Conor on Fri, 27 Jul 2007 18:09:20 GMT
View Forum Message <> Reply to Message

On Jul 27, 1:54 pm, David Streutker <dstreut...@gmail.com> wrote:
> On Jul 27, 10:05 am, kuyper <kuy...@wizard.net> wrote:
>
>
>
>> David Streutker wrote:
>>> On Jul 27, 6:03 am, Allan Whiteford
>> ...
>>>> If you have a million elements then you have 1000000! (i.e. one million
>>>> factorial) different ways to re-order the data. However, your seed is a
>>>> 4 byte integer which can only take 2^32 different values.
>
>>>> Some messing about suggests that:
>
>>>> 1000000! =~ 10^5568636
>
>>>> which means there are ~ 10^5568636 different ways to re-arrange your
>>>> elements as opposed to the 4 x 10^9 values your seed can take.
>
>>>> Thus, using any of the algorithms suggested you're only going to sample
>
>>>> 10^-5568625 %
>
>>>> of the possible values. This is a really small number. It means that no
>>>> matter how hard you try and how many times you do things you'll never be
>>>> able to access anything but a tiny number of the possibilities without
>>>> doing multiple shufflings - I think it's something like 618737
>>>> sub-shufflings (i.e. 5568636 / 9) but that could be wrong. However, that
>>>> requires producing 618737 seeds per major-shuffle (and you can't use a
>>>> generator based on a 4 byte seed to produce these seeds).
>
>>>> But, since you're only going to be running the code 1000-10,000 times
>>>> (which is much smaller than 4e9) I guess everything will be ok. I don't
>>>> know if anyone has studied possible correlations of results as a
>>>> function of the very small number of seeds (compared to the data),
>>>> whatever random number generator is used and the shuffling method.
>>>> Presumably they have and presumably everything is ok. Does anyone know?
>
>>>> Thanks,
>
>>>> Allan
>
>>> I'm not sure that I agree. Where in any of our algorithms are we
>>> unable to access a (theoretically) possible outcome? As long as we

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5992
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24979&goto=54992#msg_54992
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=54992
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>> are able to randomly select any element of the array in each step, it
>>> should work, right? (I.e., as long as the input array has fewer than
>>> 2^32 elements.) In your analysis, shouldn't we be using (2^32)^n for
>>> the maximum possible number of randomly generated combinations, where
>>> n is the number of steps/elements?
>
>> No, because the entire sequence of numbers is uniquely determined by
>> initial internal state of the generator. If you knew the algorithm
>> used, and the internal state, that's all the information you'd need to
>> predict, precisely, the entire sequence of numbers generated, no
>> matter how long that sequence was. If the internal state is stored in
>> a 32 bit integer, that means there's only 2^32 possible different
>> sequences.
>
>>> From that fact, it can also be shown that every possible sequence must
>
>> start repeating, exactly, with a period that is less than 2^32. If one
>> of the possible sequences has starts repeating with a period T, then
>> at least T-1 of the other possible sequences generate that same repeat
>> cycle, with various shifts.
>
>> There's a reason why these things are called PSEUDO-random number
>> generators.
>
> Interesting. I hadn't really thought it through before.
>
> If there are only 2^32 possible sequences, then why is the internal
> state characterized by a 36-element array?
>
> IDL> test = randomu(seed)
> IDL> help, seed
> SEED LONG = Array[36]
>
> Is it that there are only 2^32 possible sequences available during any
> given session? With a new set being available in a different session?

That is a very interesting question. According to the online-manual:

The random number generator is taken from: "Random Number Generators:
Good Ones are Hard to Find", Park and Miller, Communications of the
ACM, Oct 1988, Vol 31, No. 10, p. 1192. To remove low-order serial
correlations, a Bays-Durham shuffle is added, resulting in a random
number generator similar to ran1() in Section 7.1 of Numerical Recipes
in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press.

Hmm... It turns out that randomn is completely useless. It claims to

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

use the Box-Muller method, which I happen to know is a simple
variation on a regular random number generator, but with half the
possible sequences. Therefore, it has: (2^32)/2 sequences = 1^32
sequences = 1 It repeats after generating only 1 random number!!!
Yikes!!!! Someone should alert RSI!!!

(okay, okay, it was a bad joke. So sue me.) Anyway, back to
reality. I wonder if RSI uses an array of size 36 to institute a
"virtual" increase of variable size, allowing for more precise
calculations??? Is such a thing possible? I don't know why else they
would need an array to hold their seed, although I'm going to guess it
is for another reason.

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

