Subject: Re: Randomize array order
Posted by David Streutker on Fri, 27 Jul 2007 17:54:07 GMT

View Forum Message <> Reply to Message

On Jul 27, 10:05 am, kuyper <kuy...@wizard.net> wrote:
> David Streutker wrote:

>>

On Jul 27, 6:03 am, Allan Whiteford

> .

>>>
>>>
>>>
>
>>>
>
>>>
>
>>>
>>>
>
>>>
>
>>>
>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>
>>>
>>>
>>>
>>>
>>>
>>>
>
>>>
>
>>>
>
>>
>>
>>
>>
>>
>>

If you have a million elements then you have 1000000! (i.e. one million
factorial) different ways to re-order the data. However, your seed is a
4 byte integer which can only take 232 different values.

Some messing about suggests that:
1000000! =~ 1075568636

which means there are ~ 10"5568636 different ways to re-arrange your
elements as opposed to the 4 x 1079 values your seed can take.

Thus, using any of the algorithms suggested you're only going to sample
107-5568625 %

of the possible values. This is a really small number. It means that no
matter how hard you try and how many times you do things you'll never be
able to access anything but a tiny number of the possibilities without

doing multiple shufflings - | think it's something like 618737

sub-shufflings (i.e. 5568636 / 9) but that could be wrong. However, that
requires producing 618737 seeds per major-shuffle (and you can't use a
generator based on a 4 byte seed to produce these seeds).

But, since you're only going to be running the code 1000-10,000 times
(which is much smaller than 4e9) | guess everything will be ok. | don't

know if anyone has studied possible correlations of results as a

function of the very small number of seeds (compared to the data),

whatever random number generator is used and the shuffling method.
Presumably they have and presumably everything is ok. Does anyone know?

Thanks,
Allan

I'm not sure that | agree. Where in any of our algorithms are we

unable to access a (theoretically) possible outcome? As long as we

are able to randomly select any element of the array in each step, it

should work, right? (l.e., as long as the input array has fewer than

232 elements.) In your analysis, shouldn't we be using (2732)"n for

the maximum possible number of randomly generated combinations, where

Page

1 of 2 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5442
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24979&goto=54994#msg_54994
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=54994
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> n is the number of steps/elements?

VVVVYVYVYVYVYV

No, because the entire sequence of numbers is uniquely determined by
initial internal state of the generator. If you knew the algorithm

used, and the internal state, that's all the information you'd need to
predict, precisely, the entire sequence of numbers generated, no
matter how long that sequence was. If the internal state is stored in

a 32 bit integer, that means there's only 2*32 possible different
sequences.

>> From that fact, it can also be shown that every possible sequence must

V VVVVYVYVYV

start repeating, exactly, with a period that is less than 2°32. If one

of the possible sequences has starts repeating with a period T, then

at least T-1 of the other possible sequences generate that same repeat
cycle, with various shifts.

There's a reason why these things are called PSEUDO-random number
generators.

Interesting. | hadn't really thought it through before.

If there are only 2°32 possible sequences, then why is the internal
state characterized by a 36-element array?

IDL> test = randomu(seed)
IDL> help, seed
SEED LONG = Array[36]

Is it that there are only 2732 possible sequences available during any
given session? With a new set being available in a different session?

Page 2 of 2 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

