
Subject: Re: Randomize array order
Posted by Conor on Thu, 26 Jul 2007 16:22:27 GMT
View Forum Message <> Reply to Message

On Jul 26, 11:49 am, Allan Whiteford
<allan.rem...@phys.remove.strath.ac.remove.uk> wrote:
> hradilv wrote:
>> On Jul 26, 9:58 am, hradilv <hrad...@yahoo.com> wrote:
>
>>> On Jul 26, 8:40 am, Conor <cmanc...@gmail.com> wrote:
>
>>>> On Jul 26, 9:30 am, Allan Whiteford
>
>>>> <allan.rem...@phys.remove.strath.ac.remove.uk> wrote:
>
>>>> >Conor wrote:
>
>>>> >>Hi everyone!
>
>>>> >> Anyone know an efficient way to randomize an array (I have a
>>>> >>sorted array that I want unsorted). Initially, I tried something like
>>>> >>this:
>
>>>> >>array = findgen(1000000)
>>>> >>unsort = array[sort(randomu(seed,1000000))]
>
>>>> >>It works, but sorting on a million elements is rather slow. Anyone
>>>> >>know a faster way?
>
>>>> >Conor,
>
>>>> >Is it a million elements you want to do?
>
>>>> >The following scales better:
>
>>>> >pro shuffle,in
>>>> > b=long(n_elements(in)*randomu(seed,n_elements(in)))
>>>> > for i=0l,n_elements(in)-1 do begin
>>>> > tmp=in[i]
>>>> > in[i]=in[b[i]]
>>>> > in[b[i]]=tmp
>>>> > end
>>>> >end
>
>>>> >but on my machine, a million elements is around about where it starts to
>>>> >become as efficient as yours. For 10 million elements the above is a bit
>>>> >(17.05 seconds vs 12.92 seconds) but for 1 million elements they both
>>>> >come in at around 1.2 seconds (1.15 seconds vs 1.26 seconds). The above

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5992
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24979&goto=55013#msg_55013
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=55013
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>>> >will scale as pretty much O(n) since it doesn't do any sorting but it
>>>> >takes a hit in the practical implementation because of the loop in
>>>> >IDL-space. Your suggestion will scale worse than O(n) but it seems the
>>>> >overlap in the two methods is exactly where you want to work.
>
>>>> >Maybe my loop can be made more efficient in practical terms but I don't
>>>> >think this is any better algorithm in terms of scaling (hard to imagine
>>>> >anything that could go faster than O(n) to randomise n things).
>
>>>> >Probably not helpful but I thought it was interesting that the
>>>> >cross-over is exactly where you want to work. But, maybe I should get
>>>> >out more if I think that's especially interesting.
>
>>>> >Thanks,
>
>>>> >Allan
>
>>>> Thanks for the suggestions guys! I'll have to play around and see
>>>> what works best.
>
>>> Here's a table of results from my machine. All times are in seconds.
>>> PC single processor, WinXP, IDL6.4
>
>>> i Niter Rand-meth Loop-meth
>>> 0 100000 0.0929999 0.110000
>>> 1 166810 0.0779998 0.0940001
>>> 2 278256 0.140000 0.157000
>>> 3 464158 0.297000 0.297000
>>> 4 774263 0.578000 0.562000
>>> 5 1291549 1.09400 0.890000
>>> 6 2154435 2.06300 1.48400
>>> 7 3593812 3.84400 2.56300
>>> 8 5994841 7.09400 4.31300
>>> 9 10000000 13.0470 7.29800
>
>> More details: Single Intel 1.86GHz, 2Gb RAM
>
>> Other machine: Sun Blade 2500 - Solaris 9, IDL 6.3 - Dual processor,
>> 2Gb RAM
>
>> i Niter Rand-meth Loop-meth
>> 0 100000 0.112775 0.218330
>> 1 166810 0.194601 0.370555
>> 2 278256 0.369679 0.621675
>> 3 464158 0.700207 1.05355
>> 4 774263 1.32646 1.74441
>> 5 1291549 2.42519 2.95356
>> 6 2154435 4.38822 4.91093

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> 7 3593812 8.63800 8.35843
>> 8 5994841 15.6409 13.9243
>> 9 10000000 28.9150 23.6173
>
>> Interesting, there's a crossover at ~ 3,000,000 where the loop method
>> starts to win.
>
> Here's what I get on a dual core 3GHz Pentium 4 with 2GB of RAM running
> Linux (FC4) using IDL6.2:
>
> i Niter Rand-meth Loop-meth
> 0 100000 0.0818000 0.120713
> 1 166810 0.140054 0.205111
> 2 278256 0.255531 0.340111
> 3 464158 0.462941 0.572567
> 4 774263 0.835279 0.973762
> 5 1291549 1.53649 1.71803
> 6 2154435 3.08281 2.83829
> 7 3593812 5.27431 4.71084
> 8 5994841 10.6316 7.85549
> 9 10000000 17.4706 13.6622
>
> kind of annoying that your 1.8GHz machine running windows goes faster
> than my 3GHz running Linux. Not as bad as how slow the Sun goes though.
>
> Incidentally, previously I was quoting raw CPU times rather than the
> wall clock times which your routine prints out.
>
> Thanks,
>
> Allan

Here's what I get running it on my super old computer:

 0 100000 0.231639 0.266472
 1 166810 0.429814 0.450388
 2 278256 0.768671 0.777250
 3 464158 1.40014 1.29011
 4 774263 2.55367 2.15114
 5 1291549 4.66570 3.60980
 6 2154435 8.48878 6.04430
 7 3593812 15.3753 10.1437
 8 5994841 29.2131 20.1072
 9 10000000 52.2718 29.7969

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

