Subject: Re: the last line of a large file
Posted by Conor on Fri, 10 Aug 2007 15:51:17 GMT

View Forum Message <> Reply to Message

On Aug 10, 11:00 am, Carsten Lechte <c...@toppoint.de> wrote:

> Conor wrote:

>> |ol! Really! What in the world is the point of putting the number of
>> lines at the end of the file?

One legitimate reason would be that sometimes you only know how much
data you have until after you have processed it all, especially if the
data sets are so large that you only ever have a small subset in RAM.

A legitimate example are zip archives, where the table of contents is
written to the end of the file, because the the compressed sizes of

the archive members cannot be known in advance, and it would double
the running time to determine the compressed size beforehand, it would
furthermore use twice the disk space to re-write the file with the
contents in front, it would be impossible to keep the whole archive

in RAM before writing it, and finally, one may not be able leave space
for the contents table at the beginning of the file, to be filled in

later, because one would have to know how long the table will be
beforehand...

Of course, this does not mean that the original poster's data has a
legitimate reason for being organised like this.

For the original poster's problem, one idea is to get the file size

in bytes, skip to position file_size-1000, read that small chunk and
parse it for the desired metadata. This might even be faster than
actually counting the lines with FILE_LINES, but it is probably only
worth it if the metadata contains more useful information that just
the number of lines in the file.

VVVVVVVVVVVVVVVVVVVVVVVYVYVYVYV

chl

As an actual suggestion, if the file_lines dosesn't take too long you
can always just count the number of lines and break down the file into
manageable chunks. Imagine for a moment that the following file has
1,000,000 lines and your computer can only make arrays with 10,000
rows at a time (which you would know in advanced). You might do
something like this:

max_size = 10000

num_rows = file_lines(file) ; 1,000,000
num_parts = num_rows/max_size ; 10 parts
num_cols = 10

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5992
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=25063&goto=55330#msg_55330
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=55330
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

data = fltarr(max_size,numcols)

for i=0,num_parts-1 do begin

readf,lun,data

; do something with data, then read the next chunk
endfor

There's a couple other things you can do. For starters, if you don't
already know it you can calucluate the number of columns in the file
by reading in the first line, using strsplit, and then rewinding the

file to the beginning. Also, | haven't included it in the above code,

but you'll have to keep track of the last line still. In this case

what you would probably do is calculate how many lines you want to
read in the last chunk of data, and worry about it then. For

instance, imagine the same example but now the line has 75,000 lines
and you don't want to read the last one:

max_size = 10000

num_rows = file_lines(file) ; 75,000

num_parts = ceil(num_rows/max_size) ; 8 parts

num_cols = 10

last_read = max_size - (hum_parts*max_size - num_rows) - 1 ; 4999

data = fltarr(max_size,numcols)

for i=0,num_parts-1 do begin
if i eq num_parts-1 then begin
readf,lun,data
endif else begin
data = fltarr(last_read,numcols)
readf,lun,data
endelse
; do something with data, then read the next chunk
endfor

Not exactly elegant, but it should work for your problem.

Page 2 of 2 ---- Cenerated from conp. |l ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

