Subject: Re: Comparing 2 arrays Posted by James Kuyper on Mon, 27 Aug 2007 17:40:40 GMT

View Forum Message <> Reply to Message

Conor wrote:

- > On Aug 26, 12:43 pm, David Fanning <n...@dfanning.com> wrote:
- >> Jean H. writes:
- >>> to get back to a previous discussion we had a few month ago about being
- >>> "sufficiently close to zero", shouldn't it be (data1.A data2.B) LT
- >>> epsilon * data1.A, with epsilon=(machar()).eps?

>>

- >> Humm, I don't recall that discussion. But I can see how
- >> this number might meet the criteria of "sufficiently close".
- >> On the other hand, I can also envision situations where
- >> the number could be orders of magnitude larger and still
- >> work for a particular application. I'm probably mistaken,
- >> but it seems to me "sufficiently close" is an arbitrary
- >> value that must be picked empirically to match the data
- >> and what you are trying to do with it.

>>

>> Cheers,

>> David

>>

- >> P.S. I'm just thinking that "sufficiently close" to a
- >> black hole, for example, might be a completely different
- number than "sufficiently close" to my house.

- >> --
- >> David Fanning, Ph.D.
- >> Fanning Software Consulting, Inc.
- >> Coyote's Guide to IDL Programming:http://www.dfanning.com/
- >> Sepore ma de ni thui. ("Perhaps thou speakest truth.")

- > Hmm... I think Jean might be on to something. After all, the error in
- > question hear is the rounding error of the computer, and that rounding
- error is always an error on the last 'bit' of a floating point
- number. So for instance if you had two floating point numbers:

- 1.1123453e15
- > and
- 1.1123454e15

- These might be the same number (to within the rounding error) but the
- > difference between them is about 6.7e07. That's assuming of course
- > that I'm properly understanding floating point representation (I'm an
- > astronomer, not a computer engineer).

The direct effect of a single roundoff error shouldn't be more than 1 bit in the last position. However, it is often the case that two different numbers that should mathematically be the same, have been brought together through a long series of operations. A roundoff error in the first operation could be magnified or reduced by the next operation, in addition to that operation creating round-off errors of its own. In general, you must either analyze the propogation of error through the calculations, or at least measure the typical error sizes empirically, as David suggested.