Subject: Re: Any suggestions for a B&W colour scheme for publication images? Posted by Vince Hradil on Tue, 25 Sep 2007 15:01:34 GMT

View Forum Message <> Reply to Message

On Sep 25, 9:25 am, Tyler <hayes.ty...@gmail.com> wrote: > Hello All: > I am in the process of submitting some figures to a journal for > publication (it has been accepted). I intend to save my supervisor > cash by submitting B&W figures for print, and keep the colour images > for the electronic version. > Here is my problem. Originally, I've been using one of the EOS colour > schemes and the figures turn out great. There is excellent contrast > between regions, and the positive/negative values are clearly > distinguished. Sadly, switching the colour scheme to B&W tends to blur > these crucial distinct regions. > > I have tried several values for STRETCH. Perhaps I was not using the > STRETCH command properly. Does anyone have any suggestions for values > of STRETCH or GAMMA CT that have worked for their own publications in > the past? This problem is only further compounded by the fact that > XLOADCT seems to not want to load from my IDL script file, so I'm > limited to what I can do from the within the script. > > For what it's worth, I have several figures to convert to B&W, all of > which have different maximums and minimums. Can I use that knowledge > to control STRETCH/GAMMA CT with these values? > > I have two example PNG files I can send to anyone if they would like > to see what I am talking about. Just email me with "GAMMA CT" in the > subject heading. > Any ideas are greatly appreciated. > > Cheers, > t. Here's a reference: J. McNames, "An effective color scale for simultaneous color and gray-scale publications," IEEE Signal

Processing Magazine, Vol. 23, No. 1, January 2006, pp. 82-87. (pdf: http://bsp.pdx.edu/Publications/2006/SPM_McNames.pdf)

I translated the matlab code here:

function hyperbola, nc, ymaxa=ymaxa

```
if n_elements(ymaxa) eq 0 then ymaxa=0.95
 a = sqrt((1.0-ymaxa)^2/(1.0-(1.0-ymaxa)^2))
 xvals = findgen(nc)
 xs = 2.0 * xvals/float(nc-1) - 1.0 ; scale from -1 to 1
 nx = n_elements(xvals)
 y = 1.0 - sqrt(xs^2+a^2)/sqrt(1.0+a^2)
 y = y > 0.0
 return, y
end
function triangle, nc
result = findgen(nc/2)/float(nc/2-1)
result = [result,reverse(result)]
return, result
end
function colorspiral, nc, np, palname, smin=smin, twosided=twosided
if n_elements(smin) eq 0 then smin=0
:nc=128
;np=2
wn = sqrt(3.0/8.0) * hyperbola(nc)
a12 = asin(1.0/sqrt(3.0))
a23 = \frac{pi}{4.0}
if keyword_set(twosided) then begin
  t = sqrt(3.0)*findgen(nc/2)/float(nc/2-1)
  t = [-reverse(t),t]
  wn = [reverse(wn),wn]
endif else begin
  t = sqrt(3.0)*findgen(nc)/float(nc-1)
endelse
r0 = abs(t)
g0 = wn * cos((t-sqrt(3.0)/2.0)*np*2.0*!pi/sqrt(3.0))
b0 = wn * sin((t-sqrt(3.0)/2.0)*np*2.0*!pi/sqrt(3.0))
pm, 3, 3
plot, r0, g0
plot, r0, b0
plot, q0, b0
```

```
rgpol = cv_coord(from_rect=transpose([[r0],[g0]]),/to_polar)
rg1 = cv_coord(from_polar=[rgpol[0,*]+a12,rgpol[1,*]],/to_rect)
r1 = reform(rg1[0,*])
g1 = reform(rg1[1,*])
b1 = b0
plot, r1, g1
plot, r1, b1
plot, g1, b1
rbpol = cv_coord(from_rect=transpose([[r1],[b1]]),/to_polar)
rb2 = cv_coord(from_polar=[rbpol[0,*]+a23,rbpol[1,*]],/to_rect)
r2 = reform(rb2[0,*])
g2 = g1
b2 = reform(rb2[1,*])
plot, r2, g2
plot, r2, b2
plot, g2, b2
spiral = bytscl([[r2],[g2],[b2]])
:smin = 0
smax = nc-smin-1
spiral = congrid(spiral[smin:smax,*],nc,3)
openw, lun, palname+'.pal', /get_lun
printf, lun, palname
for i=nc-1, 0, -1 do printf, lun, string(format='("#",3z2.2)',spiral[i,
0],spiral[i,1],spiral[i,2])
free_lun, lun
return, spiral
end
```