Subject: Re: particle detection - a way to speed up things? Posted by dcleon@gmail.com on Wed, 28 Nov 2007 18:42:00 GMT View Forum Message <> Reply to Message

On Nov 28, 6:40 am, Ingo von Borstel <newsgro...@planetmaker.de> wrote: > Hi there. > > I run an algorithm which tries to detect particles on image sequences. > The most time consuming operation (more than half of the processing > time) is to find the centre of all detected particles. I calculate the > centre of each particle separatedly by supplying an image where only the > i-th particle is present to "schwerpunkt2". Is there a faster way to do > this? I put the outline of the calling routine and "schwerpunkt2" below > for reference. > > Best regards, > Ingo > PRO schwerpunkt2, image, xpos, ypos, img_total=img_total, dims=dims ; Procedure returns the centre of weight (xpos, ypos) of a ; 2D-array (image). In order to speed up calculation, the total of the > ; supplied 2D array (img_total) and its dimensions (dims) can be ; supplied, should they already be known. > IF SIZE(image,/N_DIMENSIONS) NE 2 THEN BEGIN MESSAGE, "Number of dimensions must be exactly two.",/CONTINUE xpos = 0> > ypos = 0RETURN > ENDIF > IF NOT KEYWORD_SET(dims) THEN \$ dims = SIZE(image,/DIMENSIONS) > IF NOT KEYWORD_SET(img_total) THEN \$ img total = TOTAL(image) > > xs = dims[0] & ys = dims[1] > > xvec = indgen(xs) > yvec = indgen(ys) > > xpos = TOTAL(xvec * TOTAL(image,2))/img_total > ypos = TOTAL(yvec * TOTAL(image,1))/img_total > END; schwerpunkt2

```
>
> PRO detect_particles, filename, area, pos, brightness, minintbright,
> maxsize, minsize
> image = READ_IMAGE(filename)
       ; Now do proper noise reduction and particle enhancement using edge
> detection, and filtering with proper structuring elements such that
> particles most probable don't overlap anymore and are separated by zeros
> in the image.
> gray image = enhance image(image)
>
> particle_image =
> WATERSHED(255-gray image,CONNECTIVITY=8,/LONG,nregions=n par ticles)
> dims =SIZE(particle_image,/DIMENSIONS)
>
> pos = DBLARR(n_particles,2)
> area = DBLARR(n_particles)
> brightness = DBLARR(n particles)
>
       ; Now determine properties of all detected particles
>
  FOR i=0,n particles-1 DO BEGIN
       bin thisparticle = particle image EQ i
>
       gray thisparticle = particle image * bin thisparticle
>
       xpos = 0 & ypos = 0
>
       area[i-1] = TOTAL(bin_thisparticle)
>
       brightness[i-1] = TOTAL(gray_thisparticle)
>
       schwerpunkt2, gray_thisparticle, xpos,
>
  ypos,img_total=brightness[i-1],dims=dims
       pos[i-1,0] = xpos
       pos[i-1,1] = ypos
>
       IF area[i-1] LT minsize OR area[i-1] GT maxsize OR brightness[i-1] LT
>
 minintbright THEN BEGIN
            real_particle[i-1] = 0
>
            gray_image *= particle_image NE i
>
       ENDIF
> ENDFOR
  END ;detect_particles
>
> --
> Ingo von Borstel
                            <newsgro...@planetmaker.de>
> Public Key:http://www.planetmaker.de/ingo.asc
> If you need an urgent reply, replace newsgroups by vgap.
If I'm reading your program correctly, you have a big image consisting
(presumably) of
a lot of empty space and numerous particles that you have identified
in some way.
```

My guess is that the main reason your program is slow is that for each

particle you are summing over the entire image.

I can see two ways to speed things up:

- 1) Create subsets of the image for each particle and only sum only over the subset containing the particle.
- 2) Use something like HISTOGRAM or a multi-dimensional historgam with the REVERSE_INDICES keyword (or equivalent) to get the indices associated with each particle and sum over those. The histogram command would be applied to your particle_image field with a binsize of 1 and starting at 0. See http://www.dfanning.com/tips/histogram_tutorial.html for ideas on how to approach this problem using histograms.

Of these approaches, 1 is more straightforward while 2 has the potential to speed things up more dramatically.

cheers dave