
Subject: Re: putting data into .kml (google earth) from IDL
Posted by mccreigh on Mon, 14 Jan 2008 19:53:51 GMT
View Forum Message <> Reply to Message

(I'm not really sure of the best way to do this so I put all the IDL
codes referenced here and a few more into
http://atoc.colorado.edu/~mccreigh/KML_obj/jan_14_08
. note i also tarred (jan_14_08.tar.gz) them so you could download as
well as browse.)

I decided that I needed to use the XML tools in IDL. So, this is kinda
a crash course for myself (and could be for you as well) as I try to
develop some tools for writing kml more efficiently in IDL. If you go
through this, you may note that things are a bit rough, i have some
questions lingering in the code here and there and details have not
been fully implemented. But you should be able to make it through the
examples OK. (see pentagon2.pro and its output IDL_pentagon2.kml if
you want to see how far i got for now).

Since it was easier to first understand how to parse an existing XML
document than how to create one, I first wrote a routine which will
show the tag structure for *most* (sometimes it wouldnt define the
document object, may have been anamoulous behavior and I'm sure there
are exceptions) XML documents. This is one of the very few recursive
routines which i've ever written, this is a cool example of recursive
programming. Try it on any KML file you might have, or just on the
IDL_pentagon.kml files in with the code.

A KML file has a basic structure. The XML tag is refered to as the
document object and is the root node (in the IDLffXMLDOM). The
firstchild of that root is the KML tag, in which all the action
happens. So, i wrote KML_init.pro to set up the XML and KML tags as
document object and firstchild node,respectively.

From here, new elements of the document are created and appended to a
parent node object (the parent can be the KML tag node object or its
children) by the routine kml_new_element.pro. Their TagNames and
attributes can be set in this routine. If the node contains data
values these can be specified by NodeValue, which only does textnodes
for now. This is where all the action happens, just append new nodes
to old ones and create your KML!

Finally, you want to write the xml document (which contains your kml)
to a file (note that IDL does not save XML objects) and then you
destroy that xml object. This is the routine kml_write_destroy.pro.

Since I'm interested in drawing polygons, I thought I'd recreate the
google earth example kml of rendering the pentagon:

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6338
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=26091&goto=58022#msg_58022
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=58022
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 http://code.google.com/apis/kml/documentation/kml_tut.html#p olygons

I did this using the 3 above routines in the file pentagon.pro. Of
course, you ccan see, this takes a tremendous amount of work, probably
more than just writing the kml by hand (of course i am not yet looping
over multiple polygons...). So the next step was to take the KML
object definition to a new level. I did this in kml_polygon.pro . The
file pentagon2.pro shows how the pentagon example is written using
this new, KML_polygon object procedure. Much more sleek. I've even
implemented it so that multiple innerBoundaryIs nodes may be implied
by an added dimension in the data. In pentagon2.pro i hacked the inner
points to define 2 triagles to remove from the pentagon, instead of an
inner pentagon. you can comment or uncomment this to remove the
regular, inner pentagon or the 2 triangular inner boundaries.

Next, i was quickly realizing that it is desirable to build routines
akin to kml_polygon.pro for to do this with all the KML objects seen
in the diagram:

 http://code.google.com/apis/kml/documentation/kml_tags_beta1 .html

In particular, in pentagon2.pro, i am still using the rudimentary
routines to define the placemark and name nodes (though this wasnt
problematic since they are very basic definitions). So it would be
nice to have routines to streamline these definitions.

While i was looking at the specs for each KML object, it occured to me
that if i could simply parse the specs and create code based on these,
then my work is done. While there clearly isnt enough in the specs to
generate the level of sophistication in my kml_polygon.pro, i think
most of the stuff could be gleaned. Parsing the spec with the
kml_show_structure works but I need to return more information,
basically one needs a vector of child/parent relations for each node
(i started on ths but i'm out of time for now...). At least in the
polygon example, nodes with ("only children") chlidren only need to be
set at one level, the children look to be cloned for all such nodes.
So, determining which children do and do not need to be set is
important. Also, gleaning default values from the spec would be nice.
In light of the specs being updated, it would be nice to be able to do
this in a way which might interface with any routines built on top of
what parsing the specs might give you. So that updating the code with
new specs means a minimial amount of rewrite. (I also looked into
trying to parse the specs from the html document, instead of having to
copy them out of my browser. It looked like a nightmare to me, but
this would be the most efficient way of doing it. Maybe extracting all
the <pre> </pre> tags and their contents from the html and writing the
contents to a file. - this would be the prefered, long-term way of
doing this.) But this is probably better suited to PERL than IDL

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

programming.

Anyway, I am out of time to work on this for at least another week
now. But I thought I'd post this for anyone who is interested. Since I
was not at all familiar with the IDLffXMLDOM before this, I would
appreciate feedback on if i'm doing this correctly or not. Of course,
i would appreciate people building more routines like kml_polygon.pro,
but i think the foundation of this still needs to be examined. One
thing worth mentioning is that i've come at this entirely from the
perspective of writing a KML document via an IDL routine. I dont
really care to read or edit existing KML documents, I'm primarily
concerned with generating KML from scratch. So, parsing and editing
existing KML docuements has not even been considered in what i've done
so far.

Cheers.

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

