
Subject: Re: Confluent Hypergeometric Function of the First Kind
Posted by Dan Larson on Fri, 22 Feb 2008 15:30:08 GMT
View Forum Message <> Reply to Message

On Feb 22, 8:16 am, Spon <christoph.b...@gmail.com> wrote:
> On Feb 22, 12:46 pm, Spon <christoph.b...@gmail.com> wrote:
>
>
>
>
>
>> On Feb 22, 10:36 am, noahh.schwa...@gmail.com wrote:
>
>>> On 21 fév, 17:26, Dan Larson <dlar...@aecom.yu.edu> wrote:
>
>>>> On Feb 21, 9:30 am, Spon <christoph.b...@gmail.com> wrote:
>
>>>> > On Feb 20, 3:44 pm, noahh.schwa...@gmail.com wrote:
>
>>>> > > Hello everyone,
>
>>>> > > I am looking for the ConfluentHypergeometricFunctionof the First
>>>> > > Kind in theIDLMath Library but it does not seem to be implemented!
>
>>>> > > I would like to use afunctionsimilar to the Hypergeometric1F1[a, b,
>>>> > > z] of Mathematica [http://reference.wolfram.com/mathematica/ref/
>>>> > > Hypergeometric1F1.html].
>
>>>> > > I have not found what I was looking for, and so decided to try to code
>>>> > > it my self... [sigh...]. Beeing a fresh beginner inIDLthis is a hard
>>>> > > task!
>
>>>> > > Would anybody know how to code an infinite series expansion like the
>>>> > > Hypergeometric1F1?
>
>>>> > > Thank you in advance for your time!
>>>> > > Noah
>
>>>> > Noah,
>
>>>> > here's my attempt. It accepts only scalar inputs for A and B, while Z
>>>> > can be a vector. I've tested it for the examples on the mathematica
>>>> > site and it seems to give correct results, and works correctly for
>>>> > complex input too as far as I can tell. 'Precision' is an input
>>>> > variable to specify how close two successive iterations have to be
>>>> > before thefunctionassumes they are the same and aborts the while
>>>> > loop. Default is 7 (i.e. stop when results differ by 10^-7 or less).
>>>> > If you're finding this programme is running very slow, try decreasing

Page 1 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4257
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=26332&goto=58849#msg_58849
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=58849
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>>> > the precision (I was surprised how fast it runs despite the while
>>>> > loop, actually!)
>
>>>> > Ideally the input parameters should all be double precision before you
>>>> > make the call to the funcion, but thefunctionconverts them if
>>>> > they're not.
>
>>>> > If you want all your inputs to be vectors (not just Z), I'm sure it
>>>> > can be done, but it'd be a bit more complicated. :-)
>
>>>> > Take care,
>>>> > Chris
>
>>>> >FUNCTIONHYPERGEOMETRICONEFONE, A, B, Z, $
>>>> > PRECISION = Precision, $
>>>> > K = K ; K is an output parameter to count No. of WHILE loops
>>>> > performed.
>
>>>> > ; References:
>>>> > ; http://reference.wolfram.com/mathematica/ref/Hypergeometric1 F1.html
>>>> > ; http://en.wikipedia.org/wiki/Confluent_hypergeometric_functi on
>
>>>> > IF N_PARAMS() NE 3 THEN MESSAGE, 'Must input A, B & Z as 3 input
>>>> > parameters.'
>>>> > IF N_ELEMENTS(A) GT 1 THEN MESSAGE, 'Variable A must be a scalar.'
>>>> > IF N_ELEMENTS(B) GT 1 THEN MESSAGE, 'Variable B must be a scalar.'
>
>>>> > A *= 1.0D ; Double precision or double complex scalar
>>>> > B *= 1.0D ; Double precision or double complex scalar
>>>> > Z *= 1.0D ; Double precision or double complex scalar or vector
>>>> > IF N_ELEMENTS(Precision) EQ 0 THEN $
>>>> > Precision = 7L ELSE $
>>>> > Precision = (LONG(Precision))[0]
>>>> > Cutoff = 10D^(-1D * Precision) > (MACHAR()).EPS ; Cutoff can't be
>>>> > smaller than machine accuracy!
>
>>>> > K = 0L
>>>> > ThisResult = REPLICATE(0D, N_ELEMENTS(Z))
>>>> > WHILE (N_ELEMENTS(LastResult) EQ 0) || (MAX(ABS(LastResult -
>>>> > ThisResult)) GT Cutoff) DO BEGIN
>>>> > LastResult = ThisResult
>>>> > AK = GAMMA(A + K) / GAMMA(A) ; Define (A)k
>>>> > BK = GAMMA(B + K) / GAMMA(B) ; Define (B)k
>>>> > F = (AK * Z^K) / (BK * FACTORIAL(K)) ; Evaluatefunction.
>>>> > ThisResult = LastResult + F
>>>> > K += 1
>>>> > ENDWHILE ; Until result is good to Precision
>

Page 2 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>>> > ; Error if not enough while loops to give accurate results.
>>>> > IF K LE 1 THEN MESSAGE, 'Functionfailed. Try greater precision.'
>
>>>> > RETURN, ThisResult
>>>> > END- Hide quoted text -
>
>>>> > - Show quoted text -
>
>>>> Noah,
>
>>>> Here is my implementation, both of the series expansion of thehypergeometricfunctionand
the integral representation. Depending on
>>>> the parameters, I have found that one may be more stable than the
>>>> other. Both of these are based on Arfken and Weber, Mathematical
>>>> Methods for Physicists.
>
>>>> best,
>>>> dan
>
>>>> ; chss
>>>> ; confluenthypergeometricseries solution
>>>> ; calculates the solution to the differential equation:
>>>> ; xy"(x) + (c - x)y'(x) - ay(x) = 0
>>>> ; (see Afken and Weber, p. 801-2)
>>>> ;
>>>> ; inputs:
>>>> ; n: number of terms to calculate. Due limits inIDLarchitecture n
>>>> must be between 1 and 170.
>>>> ; a, c: vector of constants - see above. They MUST have the same
>>>> number of elelments
>>>> ; x: input value
>>>> ;
>>>> ; outputs:
>>>> ; y: output vector
>>>> ;
>>>> ; Dan Larson, 2007.10.11
>
>>>> functionchss, n, a, c, x
>>>> y = DBLARR((SIZE(a))[1])
>>>> ; first term of series expansion is 1, so we initialize the output
>>>> y[*] = 1
>
>>>> FOR i = 0, (SIZE(a))[1]-1 DO BEGIN
>>>> ; initialize constant series products
>>>> a_p = 1
>>>> c_p = 1
>>>> FOR j = 0, n DO BEGIN
>

Page 3 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>>> a_p *= (a[i] + j)
>>>> c_p *= (c[i] + j)
>>>> d = FACTORIAL(j + 1)
>
>>>> y[i] += (a_p/c_p)*(x^(j + 1))/d
>
>>>> ENDFOR
>>>> ENDFOR
>>>> RETURN, y
>>>> END
>
>>>> ; chins
>>>> ; confluenthypergeometricintegral solution
>>>> ; calculates the solution to the differential equation:
>>>> ; xy"(x) + (c - x)y'(x) - ay(x) = 0
>>>> ; (see Afken and Weber, p. 801-2)
>>>> ;
>>>> ; inputs:
>>>> ; a, c: vector constants - see above
>>>> ; x: input value
>>>> ;
>>>> ; outputs:
>>>> ; y: output vector
>>>> ;
>>>> ;Dan larson, 2007.10.11
>
>>>> Functionchins, a, c, x
>>>> ; curve point resolution, change this if your results look like
>>>> crap
>>>> b = 1000
>>>> ; initialize t vector
>>>> t = DINDGEN(b + 1)/b
>>>> ; initialize vector of curve heights
>>>> h = DBLARR(b + 1)
>>>> ; initialize output
>>>> y=dblarr(n_elements(c))
>
>>>> g1 = GAMMA(c)
>>>> g2 = GAMMA(a) * GAMMA(c - a)
>
>>>> FOR i = 0, (SIZE(a))[1]-1 DO BEGIN
>>>> FOR j = 0, b DO BEGIN
>>>> h[j] = exp(x*t[j]) * ((t[j])^(a[i] - 1.0)) * ((1.0 -
>>>> t[j])^(c[i] - a[i] - 1.0))
>>>> ENDFOR
>
>>>> y[i] = (g1[i]/g2[i]) * int_tabulated(t, h, /double)
>>>> ENDFOR

Page 4 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>>>> RETURN, y
>>>> END
>
>>>> ; chcmp
>>>> ; compares the results between the integral and series form of CHF
>>>> ;
>>>> ; inputs:
>>>> ; a, c: constants
>>>> ; x: input value
>>>> ;
>>>> ; output:
>>>> ; none
>>>> ; (solution is printed to screen)
>
>>>> PRO chcmp, a, c, x, epsilon
>>>> y1 = chins(a, c, x)
>
>>>> lastVal = 0.0000
>
>>>> FOR n = 1, 170 DO BEGIN
>>>> y2 = chss(n, a, c, x)
>
>>>> IF (ABS(y1 - y2)/y1 LT epsilon) THEN BEGIN
>>>> print, "Number of necessary terms for ep = ", epsilon, " n =
>>>> ", n
>>>> BREAK
>>>> ENDIF
>
>>>> IF(ABS(lastVal - y2)/y2 EQ 0) THEN BEGIN
>>>> print, "Series converged before matching integral!"
>>>> BREAK
>>>> ENDIF
>
>>>> lastVal = y2
>>>> ENDFOR
>
>>>> IF n EQ 169 THEN PRINT, "Equations did not meet!"
>
>>>> RETURN
>>>> END
>
>>> Thank you all for your answers. It really made my day!
>>> I've tested the 3 methods for the "Mathematica" example (i.e. for
>>> 1F1(1,2,[-5..5]))
>>> HYPERGEOMETRICONEFONE, CHSS and CHINS seem to work fine for this
>>> example. HYPERGEOMETRICONEFONE seems a bit faster than the other ones.
>>> Unfortunately I am more interested in evaluating something like 1F1(-.

Page 5 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>> 75,1,40) :
>
>>> IDL> print,hypergeometriconefone(-0.75D,1D,-40D)
>>> NaN
>
>>> IDL> print, chins([-0.75D],[1D],-40D)
>>> NaN
>
>>> IDL> print, chss(169D,[-0.75D],[1D],-40D)
>>> 17.478776
>
>>> The mathematica website gives [http://functions.wolfram.com/
>>> webMathematica/FunctionEvaluation.jsp?name=Hypergeometric1F1]:

>
>>> Thanks,
>>> Noah
>
>> Phew, you're really pushing my little programme to the limit here! ;-)
>
>> If you put this line:
>> Print, [ThisResult, K]
>> into my programme just before the line with ENDWHILE on it, you'll see
>> that the function actually gets quite close to the answer before it
>> succumbs to floating overflow. On my machine, the results of the last
>> few iterations are:
>> 17.462850 96.000000
>> 17.015058 97.000000
>> 17.196383 98.000000
>> 17.123695 99.000000
>
>> If you try "print, hypergeometriconefone(-0.75D,1D,-40D, prec=1)", you
>> should get similar results.
>
>> I suspect IDL won't really help you out here, at least until someone
>> invents 128-bit quadruple-precision data type :-(
>> Or, unless you use a better algorithm, I guess. chss seems to be that
>> better algorithm in this case.
>
>> Actually, it would help to replace this:
>> F = (AK * Z^K) / (BK * FACTORIAL(K)) ; Evaluate function.
>
>> with:
>> F = (AK / BK) * (Z^K / FACTORIAL(K)) ; Evaluate function.
>
>> Though I suspect it's just putting off the inevitable by a few more
>> iterations :-(
>> Also, there should've been some sort of protection for preventing k

Page 6 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> from going over 169, which is the limit at which FACTORIAL can work
>> reliably.
>
>> I'll try and amend the programme and repost if you're having
>> difficulty piecing my garbled lines together into your copy.
>
> The more I stare at this, the more I realise that my guess at
> available precision is WAY off the mark :-(
> I'll go stare at the 'Sky is falling' page for another while, shall
> I? :-P
> I need to make sure the precision is determined by the significant
> figures, not just an absolute.
>
> Anyway, for now if you get NaN results, just try dropping PRECISION
> below 5.
> If you want acres of spam, call the function with the debug keyword
> set.
>
> e.g.:
> Test =
>
> read more >>- Hide quoted text -
>
> - Show quoted text -...

Noah, Chris,

The fact that the series expansions (chss) works better for some
paramters is what led me to use both implementations. You may not
need as many terms (169) as you are using. I usually use about 20 -
50 and see no change in the result after that. I am a little lazier
than Chris, so I didn't put a lot of effort into determining why the
integral representation was failing. If someone pieces that together,
I would like to hear about it.

- dan

Page 7 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

