
Subject: Re: triangulating over undefined space in irregular grids
Posted by ben.bighair on Thu, 27 Mar 2008 19:56:14 GMT
View Forum Message <> Reply to Message

On Mar 27, 1:26 pm, bjel...@worldwindsinc.com wrote:
> On Mar 26, 3:10 pm, "ben.bighair" <ben.bigh...@gmail.com> wrote:
>
>
>
>> On Mar 26, 3:57 pm, bjel...@worldwindsinc.com wrote:
>
>>> On Mar 26, 11:48 am, Kenneth Bowman <k-bow...@tamu.edu> wrote:
>
>>>> In article < 419932f8-47d6-4822-aa67-6f6e235ef...@n77g2000hse.googlegroup s.com >,
>
>>>> bjel...@worldwindsinc.com wrote:
>>>> > The setup: I am trying to contour plot a number of variables for a
>>>> > storm surge grid that has up to 10 km resolution in the open Atlantic,
>>>> > yet has 8 meter resolution in New Orleans area waterways. The grid
>>>> > obviously includes most anything at or below sea level for the
>>>> > Northwest Atlantic domain, but also includes many (200k or so) land-
>>>> > based grid points (or it would be useless as a storm surge model). I
>>>> > mention the land-based nodes to express that a coastline mask will not
>>>> > fix the problem.
>
>>>> > The problem: When plotting the results using the triangles returned,
>>>> > the result includes vast areas that are outside of the model domain.
>>>> > For example, the plot shows data in trangles running from central
>>>> > Louisiana to New England, yet the grid does not include any land with
>>>> > an elevation greater than 20 meters. So the grid does include some
>>>> > land for a range of distances from the coast, from ~5 to ~100 km
>>>> > inland based on elevation.
>
>>>> I think your main problem is that TRIANGULATE computes the convex hull of
>>>> the set of points. That is, there are no "bays" or concave regions in the
>>>> resulting set of triangles. This produces the long narrow triangles that
>>>> you see across the SE U.S.
>
>>>> > Also of importance is that the grid is numbered and ordered in a
>>>> > counter-clockwise fashion, not in any order of south to north and the
>>>> > like. This is native to the model which uses a finite element method
>>>> > for calculations allowing us to successfully resolve conservation of
>>>> > momentum, velocity, etc at very high resolutions in areas of interest
>>>> > while maintaining the ability to carry out computation at lower
>>>> > resolutions over larger areas where mass conservation is
>>>> > required...such as the Gulf of Mexico. Could I reorder for purposes of
>>>> > plotting? Sure, but do I need to and where would it get me?
>

Page 1 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6069
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=26548&goto=59519#msg_59519
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=59519
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>>> > I have been through Dr. Bowman's book, Liam Gumley's book, David
>>>> > Fanning's site, the astro site, the online help, and the German
>>>> > library of IDL routines with no light shed on the solution.
>
>>>> > I have fiddled with the tolerance variable passed to triangulate which
>>>> > has not changed anything until I make it too large at which time...
>>>> > % TRIANGULATE: Points are co-linear, no solution.
>
>>>> You might also have some round-off problems, as your grid spacing spans
>>>> 4 orders of magnitude 10 to 10^4 m. Are your inputs double precision?
>
>>>> Your best bet may be to learn how to use object graphics polygon objects,
>>>> but I'm afraid I can't help you there.
>
>>>> Ken Bowman- Hide quoted text -
>
>>>> - Show quoted text -- Hide quoted text -
>
>>>> - Show quoted text -
>
>>> Yes, I think that is correct. TRIANGULATE is producing the "convex
>>> hull of the set of points"...in your words ;)
>
>>> The inputs are all double precision and the data in the files are
>>> carried out to enough places to avoid round off errors.
>>> Example definition for node 1:" 1 -90.2350725000 30.4780242000
>>> -7.9830000000"
>>> [node long lat bathymetry]
>>> Of course this is far beyond the precision of any measuring system,
>>> but that does not matter at the moment.
>
>>> The nodes at the corners of the triangles shown in the grid plot
>>> (above) are defined in the grid file. I am going to try using that to
>>> look for any side of a triangle that is not repeated, which means it
>>> is on a boundary, and classify the nodes on either end of the line
>>> (side of triangle) as a memebr of an array descibing FAULT_POLYGONS
>>> for use in GRIDDATA.
>
>>> I'll share how that goes.
>
>> Hi,
>
>> Wow! What a great problem!
>
>> I think it is worth pursuing the FAULT_POLYGONS feature of GRIDDATA.
>> I suggest that you run your points through GRID_INPUT first - these
>> can be calculated once and then saved for reuse just like the
>> triangulation can be saved.

Page 2 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>> Out of enterprising ignorance I have occasionally introduced sample
>> locations over undefined regions like land. To these locations I
>> assign whatever the "missing" value is (like NaN). The nice thing
>> about that is that the triangulation doesn't have to draw line
>> segments that cross undefined regions (like Florida). But I never did
>> that for a problem this scale.
>
>> It will be very interesting to know how you resolve this - so I am
>> glad you will share.
>
>> Cheers,
>> Ben- Hide quoted text -
>
>> - Show quoted text -
>
> An update:
>
> I am working on the fault_polygons and fault_xy arrays. Some of the
> challenge is in connecting the beginning and end of some of the
> polygons...the islands are easy. Also working on perfecting the
> generation of polygons that do not erroneously connect islands to
> mainland. As much as the populace might wish for one, Cuba does not
> have a landbridge to Florida ;-)
>
> Still perfecting all of that. A little polygon question: I can see
> that the fault_polygons can be a concatinated array describing points
> in x,y detailed in a 2-by-n array called fault_xy with n = number of
> total points in polygons. The question is, can fault_xy be the same
> concatinated array, or does it simply need to have all of the points
> in the polygons consecutively. In the online help, fault_xy is
> described as 2-by-n with n = number of points "that define the
> polygon". I am going to have dozens of ploygons and need hundreds more
> points in fault_xy than any single polygon contains.
>
> I currently have 6000+ polygon points on 61 polygons. A plot and link
> forthcoming.
>
> I must credit Jim P of ITT VIS for the first suggestion of the
> FAULT_POLYGONS in GRIDDATA method via an email response to this
> posting.
>
> I expect that as soon as I figure this all out David Fanning will come
> on and show us an elegant 2 lines to handle it all. I like his
> map_gshhs_shoreline routine utilizing some of the logic needed here.
>
> Last question for the moment: Is there a way to dictate a polygon of
> inclusion (the mainland and open Atlantic boundary) and also numerous

Page 3 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> polygons of exclusion (islands)? That would be useful.

Hi,

I am not clear on this last question. As I understand things, the
interpolation does not occur across a fault. So if you have an
"island" there will be interpolation within the island that is
independent of the interpolation outside of the island.

As far as the FAULT_XY thing, I think you simple concatenate the XY
coordinates pairs for fault1 to fault2, ...

Some thing like this...

;the polygons
xy1 = [[1.0, 1.0], [2.0, 2.0], [2.0, 0.0], [0.0,0.0]]
xy2 = [[0.0, 1.0], [3.0, 1.0], [2.5, 4.0], [1.0, 4.0], [0.0, 2.5]]
;paste the together
fault_xy = [[xy1],[xy2]]
n1 = SIZE(xy1, /N_ELEM)/2
n2 = SIZE(xy2, /N_ELEM)/2

;start the poly description - terminate with -1
fault_poly = [n1, LINDGEN(n1),-1]
;determine the size of the poly descriptor
np = SIZE(fault_poly, /N_ELEM)
;add the second polygon descriptor
fault_poly = [fault_poly[0:np-2], n2, LINDGEN(n2) + np-2, -1]

Cheers,
Ben

Page 4 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

