Subject: Re: Object based/oriented IDL ? Ever likely ?
Posted by Ken Knighton on Fri, 22 Mar 1996 08:00:00 GMT

View Forum Message <> Reply to Message

Paul Schopf <schopf@gsfc.nasa.gov> wrote:

> Now if you want to discuss encapsulation and inheritance, | agree,
> IDL is not OOP, but these are data structures, and they are very

> easy to use, and you can write functions for them, etc. etc.

IDL is not an OOL, but it does have a number of features that
make it possible to do things traditionally supported by
OOLs although perhaps not with the same elegance:

1) Polymorphism

a. Functions/procedures can be called with a variable number of
formal parameters.

b. Since identifiers are dynamically typed, a single func/pro
can be devised that performs an operation on a variety of
input argument types.

2) Inheritance

a. Keyword inheritance (_ EXTRA) can be used to allow a wrapper
routine to "inherit" the capability of another routine
and add functionality to it. For example, one can write
wrapper routines to the PLOT procedure that do some
other things but allow the calling program to utilize all
of the present and future PLOT command keywords without
having to keep track of all of them.

b. Virtual funcs/pros: Use of the EXECUTE, CALL_PROCEDURE, and
CALL_FUNCTION routines allows a programmer to set up
"classes" that have user replaceable member routines by
allowing the calling program to pass the names of the new
member routines into the "class" via arguments or to place
them into a common block for the "class".

c. Various keywords to widget routines give the programmer the
ability (with the above techniques) to do almost everything
that OOLs do as far as widgets are concerned. This includes
the ability to have constructors/destructors (notify _realize
and kill_notify), different instantiations of a class (this
Is what an object is) by keeping a widget's information in
a state variable rather than a common block, encapsulation
of data in a widget's state variable, and etc.

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1009
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=4029&goto=5952#msg_5952
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=5952
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

3) Encapsulation (data hiding)

IDL doesn't have global variables (except for system variables) and
therefore automatically has data hiding unless one uses common blocks.
Even so, common blocks are only "public" to routines that reference

the common block. A judicious use of modular programming techniques,
naming conventions, the @ command to include "header" files, and
other techniques give the programmer the ability to do a pretty

good job of encapsulating data in the module that needs it. If

there are going to be various instantiations of a module (objects),

then it is possible to use widget state variables or handles to

provide data encapsulation at the object level.

4) Operator overloading

IDL doesn't support this. Although it might be convenient to
overload operators as far as command line users go, from the
application developer standpoint (the guys that use C++, SmallTalk,
and other OOLSs), many feel that operator overloading is a bad
practice and attempt to avoid it.

It is unfortunate that some of IDL's truly powerful features tend to

be hidden or unknown to the majority of users. It is also unfortunate
that RSI doesn't use them in most of the code they supply with IDL.

It would be nice to have a bunch of tools supplied with IDL that were
written in IDL using excellent software engineering practices and

the powerful techniques that are already available in the language.
That way, users would have examples to go by when creating their own
cool software.

Finally, IDL is used in two ways: interactively and for application
development. | feel that many improvements can be made for each mode
of operation, but an improvement for one mode is not necessarily a
desirable improvement for the other. | look at IDL from an

application developer standpoint.

>
>

> BTW, a 3000 line IDL app is EXTREMELY long.
>

Sounds rather small to me, but that's the way it goes with
perspectives. :-)

Ken Knighton knighton@gav.gat.com knighton@cts.com
General Atomics
San Diego, CA

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

