
Subject: Re: Avoiding FOR loops (version googleplex.infinity)
Posted by MichaelT on Mon, 07 Apr 2008 16:25:26 GMT
View Forum Message <> Reply to Message

You can do it without WHERE and EXTRACT. Basically, you have to
generate arrays of indexes for the original array and, in your case,
its 25 shifted versions. Then you can directly compare your central
position values to the surrounding values. If your search area is
large and/or your byte array, you may get the "unable to allocate
memory: to make array" message by IDL.

=================code begin===========================

;Generate a byte array with random numbers, ranging from 0 to 9
nx = 300
ny = 200
b = byte(randomu(s, nx, ny) * 10)

;Define your search "radius". Your search area is 5x5 so the search
radius (sr) is 2
sr = 2

;width and height of your search area is (sr * 2 + 1)
nsr = (sr * 2 + 1)

;Generate an array containing the index deviations from your central
index (for x and y indexes)
;Example for x
;-2, -1, 0, 1, 2
;-2, -1, 0, 1, 2
;-2, -1, 0, 1, 2
;-2, -1, 0, 1, 2
;-2, -1, 0, 1, 2
;y is simply the transposed of x

vx = (LINDGEN(nsr) - sr) # (LONARR(nsr) + 1l)
vy = Transpose(vx)

;Reform the (5x5) array so that it becomes a vector of length (25)
vx = reform(vx, nsr^2)
vy = reform(vy, nsr^2)

;Now replicate this for each element of your byte array (omitting the
sr=2 positions at each border)
vxs = replicate({a: vx}, nx - 2*sr, ny - 2*sr)
vx = vxs.a

vys = replicate({a: vy}, nx - 2*sr, ny - 2*sr)

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5727
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=26620&goto=59688#msg_59688
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=59688
http://idlcoyote.com/comp.lang.idl-pvwave/index.php


vy = vys.a

;Now the x- and y-indexes of your byte array are generated, again
omitting the positions at the border.
;So it starts at position sr=2 and runs through position nx-1-
sr=nx-1-2
ix = (lonarr(ny - 2*sr) + 1l) # (lindgen(nx - 2*sr) + sr)
iy = (lindgen(ny - 2*sr) + sr) # (lonarr(nx - 2*sr) + 1l)

;Replicate this as often as there are elements in your 5x5 window =
nsr^2 = 25.
ixs = replicate({a: ix}, nsr^2)
iys = replicate({a: iy}, nsr^2)

;Transpose the array so that it has the same dimensions as vx and vy
ix = transpose(ixs.a)
iy = transpose(iys.a)

;Now the shifted positions are generated simply by adding the index
deviations to the index numbers
ixv = ix + vx
iyv = iy + vy

;b[ixv, iyv] eq b[ix, iy] results in an array containing 1 where a
shifted position is equal to the central position otherwise 0.
;This is summed over your 25 shifted positions: total(result, 1)
;In the end you have to substract 1 from each element as the central
position is compared to itself as well and contributes to the sum.

bn = total(b[ixv, iyv] eq b[ix, iy], 1) - 1l

;Location [0, 0] in the bn-array then corresponds to the value for [2,
2] in the b-array, due to the border problem

;Print example to check:
print, bn[0, 0]
print, b[0: 4, 0: 4]

end

=====================code end=====================

I hope it is quicker than your loop.

Michael

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

