Subject: Re: Interpolation Posted by ben.bighair on Sat, 12 Apr 2008 15:57:08 GMT View Forum Message <> Reply to Message On Apr 11, 11:05 pm, tarequea...@gmail.com wrote: > Hello All (IDL Gods), > > I am back with yet another problem. > I know...I know...its friday night. I apologize for that. But I am > really stuck here for a while. > The problem: > > In a certain part of my code I need to do interpolation. The data that > I am dealing with are from a XY grid. I need to convert them to polar > coordinate. So, what I do is following: > a. I generate a radius vector r_vec and a theta array containing > values from zero to 2 pi. > b. Now use the simple polar-to-rectangular coordinate transform i.e. x > = r cos(theta) etc. > c. Using these values I have a xy grid generated through a known r-> theta values. > d. Now think of superimposing the new xy grid(lets call it x'y') on > to the old xy grid which contains the real data. > e. This is the part where I need interpolation. I do interpolations to get the x'y' values from the xy points. > So here's the question: > ---- Is there any elegant way of doing this coordinate > transformation? (And in case you are thinking, "well you already have > the xy data, so why not just convert to r-theta?", I have to say that the interpolation method actually gives me a way nicer dataset). > > My 2nd trouble is, and this is probably the biggest and dumbest problem for me. > ---- i was playing around with several interpolation routines from IDI. My boss's suggestion was to use 'bilinear'. but I thought to give others' a shot too. Problem is, when I am > done with interpolation, result is nothing like what I was expecting. A run down version of the code is shown below: > > Nth= 10.

> dth= 1/Nth

```
> r_vec= findgen(Nth)/Nth
  theta_vec = findgen(Nth)/Nth * 2.*!Pi
> for i=0L,Nth - 1 do begin
> x[i]= r_vec[i]* cos(theta_vec)
> endfor
> for j=0L,Nth - 1 do begin
 y[j]= r_vec[j]* sin(theta_vec)
 endfor
  ;print,y
>
 ;plot,x,y
 Now I create the 'main' dataset on which I am going to use
 interpolation scheme.
> rr = findgen(20.)/30.
> tht = findgen(20.)/30. *2*!Pi
>
> m = fltarr(20,20)
 for j=0,19 do begin
    for i=0,19 do begin
>
>
    m[i,j] = rr[i] cos(tht[j]) + 5.rr[i] sin(tht[j])
>
>
    ;print,i
    endfor
>
  endfor
 m_p=bilinear(m,x,y)
> End
     The problem is, as I mentioned above, when I plot m and the
  interpolated m_p, they do not look like similar at all.
  Any help will be greatly appreciated.
>
  Thanks in advance.
```

```
> ~tareque
```

Hi,

Coordinate transforms are very easy with CV_COORD().

I don't understand where you want to go with the interpolation. The input coordinates to BILINEAR are rectangular and formed as indexed based (as in subscript indices in X and Y.) As near as I can reconstruct, X ranges from -0.500000 to 0.728115 and Y ranges from -0.760845 to 0.285317. My reconstruction of your code is

```
below.
Cheers.
Ben
PRO tareque
Nth=10L
dth = 1.0/Nth
r vec= findgen(Nth)/Nth
theta_vec = findgen(Nth)/Nth * 2.*!Pi
x = fltarr(nth)
y = fltarr(nth)
for i=0L,Nth - 1 do begin
x[i]= r_vec[i]* cos(theta_vec[i])
endfor
for j=0L,Nth - 1 do begin
y[j]= r_vec[j]* sin(theta_vec[j])
endfor
;print,y
;plot,x,y
;Now I create the 'main' dataset on which I am going to use
;interpolation scheme.
rr = findgen(20.)/30.
tht = findgen(20.)/30. *2*!Pi
```

```
m = fltarr(20,20)
for j=0,19 do begin
    for i=0,19 do begin

    m[i,j] = rr[i]*cos(tht[j]) + 5.*rr[i]*sin(tht[j])
    ;print,i
    endfor
endfor

m_p=bilinear(m,x,y)
STOP
End
```