Subject: Interpolation Posted by tarequeaziz on Sat, 12 Apr 2008 03:05:44 GMT View Forum Message <> Reply to Message

Hello All (IDL Gods),

I am back with yet another problem. I know...I know...its friday night. I apologize for that. But I am really stuck here for a while.

The problem:

In a certain part of my code I need to do interpolation. The data that I am dealing with are from a XY grid. I need to convert them to polar coordinate. So, what I do is following:

- a. I generate a radius vector r_vec and a theta array containing values from zero to 2 pi.
- b. Now use the simple polar-to-rectangular coordinate transform i.e. x = r cos(theta) etc.
- c. Using these values I have a xy grid generated through a known rtheta values.
- d. Now think of superimposing the new xy grid(lets call it x'y') on to the old xy grid which contains the real data.
- e. This is the part where I need interpolation. I do interpolations to get the x'y' values from the xy points.

So here's the question:

---- Is there any elegant way of doing this coordinate transformation? (And in case you are thinking, "well you already have the xy data, so why not just convert to r-theta?", I have to say that the interpolation method actually gives me a way nicer dataset).

My 2nd trouble is, and this is probably the biggest and dumbest problem for me.

---- i was playing around with several interpolation routines from IDI. My boss's suggestion was to use 'bilinear'.

but I thought to give others' a shot too. Problem is, when I am done with interpolation, result is nothing like what I was expecting. A run down version of the code is shown below:

Nth=10.

```
dth= 1/Nth
r_vec= findgen(Nth)/Nth
theta_vec = findgen(Nth)/Nth * 2.*!Pi
for i=0L,Nth - 1 do begin
x[i]= r_vec[i]* cos(theta_vec)
endfor
for j=0L,Nth - 1 do begin
y[j]= r_vec[j]* sin(theta_vec)
endfor
;print,y
;plot,x,y
Now I create the 'main' dataset on which I am going to use
interpolation scheme.
rr = findgen(20.)/30.
tht = findgen(20.)/30. *2*!Pi
m = fltarr(20,20)
for j=0,19 do begin
  for i=0,19 do begin
  m[i,j] = rr[i] cos(tht[j]) + 5.rr[i] sin(tht[j])
  ;print,i
  endfor
endfor
m_p=bilinear(m,x,y)
End
```

The problem is, as I mentioned above, when I plot m and the interpolated m_p, they do not look like similar at all.

An	y help	will	be	greatly	/ ar	opreciate	d.

Thanks in advance.

~tareque