
Subject: Re: Generalized Least Squares? (LONG POST!)
Posted by Gernot Hassenpflug on Tue, 20 May 2008 09:00:34 GMT
View Forum Message <> Reply to Message

Craig Markwardt <craigmnet@REMOVEcow.physics.wisc.edu> writes:

>  Gernot Hassenpflug <gernot@nict.go.jp> writes:
>>  Dear all,
>>  
>>  I'm involved in ongoing research on a problem that I solved to a first
>>  approximation with weighted least squares (using MPFIT) but for a real
>>  solution I require generalized least squares: WLS uses a diagonal
>>  covariance matrix, i.e., the data errors are uncorrelated; GLS uses a
>>  full covariance matrix, i.e., the data errors can be correlated.
>>  
>>  I have not found any ready solution in IDL yet, and I am under the
>>  impression that there is no analytical solution to GLS, so fairly
>>  complicated numerical methods are required.
>>  
>>  I have actually found a routine in MATLAB called "lscov" which can
>>  solve this problem, and wonder whether there is a chance to hobble
>>  something together in IDL? I'd be happy to try and modify MPFIT to be
>>  able to deal with GLS too, could anyone comment on possibilities?
> 
>  Greetings Gernot--

Hello Craig,

Yoiur post is much appreciated. I've been reading up on fitting,
correlated errors and matrix computations for this, so I'll indicate
below what I understand, and what I maybe missed before.

>  Solving the generalized least squares problem is reasonably
>  straightforward.  Basically it involves transforming the original
>  (correlated) variables to new (uncorrelated) variables.  Ironically I

I did not know that the transformation goes to uncorrelated
variables. From my reading, it looked as though the objective function
S, which is Chi-squared for the case of uncorrelated errors (diagonal
matrix), becomes a full matrix: S= trans(r) inv(V) r, where V is the
covariance matrix, and r is the residual vector. 

Edit: I see you give this explanation below.

Then, it seems to me though rather hazy, that the assumptions about
unbiased estimator may not hold anymore for GLS.

>  The least-squares problem can be expressed as the following normal
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>  equation, in matrix notation,
>    
>    A^T A x = A^T v

OK.

>  where A is the pattern matrix (= "Jacobian"), v is the vector of
>  normalized residuals, and x is the vector of parameters (and "^T"
>  indicates the matrix transpose).  MPFIT solves this equation, given an
>  initial estimate of x, to get a new estimate of x.

OK.

>  I say that v is the vector of normalized residuals, because typically
>  we compute it something like this,
> 
>     v = (DATA - MODEL)/ERROR

OK.

>  This explicit definition shows that we were assuming *uncorrelated*
>  errors, i.e. for each vector element, there is a single well defined
>  uncertainty which does not depend on neighboring elements.  The
>  chi-squared value is defined as,
> 
>     CHI2 = v^T v

OK.

>  However, in the case of correlated errors, the chi-square value is
>  defined as,
> 
>     CHI2 = v^T (COVAR^(-1)) v

OK.

>  where COVAR is the covariance matrix and "^(-1)" indicates the matrix
>  inverse.  In this case, v is no longer the normalized residuals, but
>  just the raw residuals.  The units are correct since COVAR has units
>  of v^2, so (COVAR^(-1)) has units of v^(-2).  The normal equation
>  becomes,
> 
>    A^T (COVAR^(-1)) A x = A^T (COVAR^(-1)) v
> 
>  Unfortunately, MPFIT does *not* solve this problem.  Are we out of
>  luck?  No, actually it's still a reasonably straightforward problem to
>  solve.
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Ah, the plot thickens!

>  For example, consider if we can factor the COVAR matrix like this,
> 
>    COVAR = L L^T

OK, this is where it got hazy for me: general optimization solutions
to systems of linear equations. I much appreciate your solution
description below, as I am sure that I could not have reliably
duplicated that with assurance that I was doing the right thing. You
describe two methods below, and the SVD one seems to be the one that
lscov uses in MATLAB.

>  where L is lower-triangular.  This is the well-known Cholesky
>  factorization.  As long as COVAR is positive-definite /../

Yes, I had the same problem as you in previous work with 95-channel
radar interferometric imaging: large matrices, noise and statistical
error, and boom, no more positive-deifnite...

>  OK, this all may sound great.  Unfortunately, in my particular
>  application, I did not succeed.  The problem was that my particular
>  covariance matrix was not positive-definite.  I had huge correlations
>  between points, which caused the CHOLSOL stage to fail.
> 
>  There is theoretically a way around *this* problem as well.  Instead
>  of using the Cholesky factorization, one can use the SVD
>  factorization, which is far more robust against singular matrices.
>  The SVD factorization looks like this,
> 
>    COVAR = UMAT WMAT VMAT^T
> 
>  where UMAT, VMAT and WMAT are matrices with special properties.  In
>  IDL, the SVDC procedure computes this factorization.
> 
>  The benefit of this method is that the singular values are sorted by
>  magnitude within the WMAT matrix.  The first values are the strongest,
>  and the last values are small, or zero.  One can effectively "zero
>  out" the insignificant singular values, which results in a more robust
>  effective inverse, COVAR^(-1).  This is described in more detail by
>  Numerical Recipes.  However, a more intuitive way to think about this
>  is that if you start with N measurements, but M of the singular values
>  are insignificant, then your data set really had N-M uncorrelated
>  degrees of freedom to begin with (whereas M of the measurements were
>  effectively totally dependent values).

Yes, understood I think: dependent given the effects of the existing
noise and statistical error, right?
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>  Proceeding, one can compute the revised values,
> 
>    B = (WMAT^(-1/2)) VMAT^T A
>    u = (WMAT^(-1/2)) VMAT^T v
> 
>  and then the problem is reduced again to the "uncorrelated" normal
>  equations described earlier.  Since WMAT is a diagonal matrix, all of
>  the equations above are very easy to compute, and can be substituted
>  into MYFUNCT_CORREL.

OK, I begin to see why it is "uncorrelated" error now.

>  Again, for my problem, I implemented this method in the C language,
>  but to be honest, the method did not improve the situation.  I believe
>  that my data was so correlated that even SVD was not appropriate./../

Many thanks Craig. My 2 cents worth: 

- when the covariance matrix of the data is so poor, then
  pre-conditioning may be necessary, which will bias the results
  unavoidably.

- better methods of experiment may be necessary to get more malleable
  data.

- the Numerical Recipes algorithm is quick and dirty, and not usable
  on anything except well-behaved data; MATLAB forum posts imply that
  the lscov algorithm is very well structured and can deal with
  this. I will post my results here within a week I hope, and give my
  ideas for what kind of solutions might be possible (other than LU
  and SVD).

Best regards,
Gernot

-- 
BOFH excuse #98:

The vendor put the bug there.
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