
Subject: Re: IDL Matrix Multiply and Dual-Core CPUs
Posted by Karl[1] on Tue, 20 May 2008 18:19:36 GMT
View Forum Message <> Reply to Message

On May 20, 1:21 am, s.haen...@gmail.com wrote:
> On 9 Mai, 20:34, Pierre <pierre.villene...@gmail.com> wrote:
>
>> Hi Samuel,
>
>> I saw a very similar problem with my quad-core PC running XP (32 bit)
>> with 4gigs of ram. I re-ran my test script on our two-core, 4-gig
>> linux box and got similar results with just slightly different array
>> sizes. Here is the script I ran:
>
>> cpu, /reset
>
>> help, !cpu, /str
>
>> Nk = 258
>> K = fltarr(Nk, Nk)
>
>> ;
>> ; Case 1.
>> ;
>> Npix = 129047
>> d = fltarr(Npix, Nk)
>> t0 = systime(1)
>
>> d #= K
>
>> t1 = systime(1) - t0
>
>> print, 'Case #1: ', Npix, t1
>
>> ;
>> ; Case 2.
>> ;
>> Npix = Npix + 1
>> d = fltarr(Npix, Nk)
>> t0 = systime(1)
>
>> d #= K
>
>> t2 = systime(1) - t0
>
>> print, 'Case #2: ', Npix, t2
>
>> On each of our computers case #2 used all available cores while case

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5533
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=26805&goto=60512#msg_60512
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=60512
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> #1 only used one core. The only difference between them is the
>> dimension of one of the arrays (Npix) is simply incremented by one.
>> The total memory used by the IDL process during this test is never
>> more and two-hundred megs or so. There is no way this problem is due
>> to a lack of physical memory. The sizes of these arrays are also
>> significantly larger then the default minimum number of elements
>> (default = 10000) required to enable multi-threading.
>
>> Any ideas?
>> Pierre
>
> It's not a Windows Problem. We have the same Problem also with
> Ubuntu...

There's a lot of speculation to follow, so be warned.

Making sure that using multiple threads is really faster isn't very
straightforward. There's lot of overhead involved when splitting the
problem into threads. There is a lot of data movement, creating
tasks, waiting for them all to complete, etc. There are also other
factors such as memory page sizes, cache lines, etc. So, using
multiple threads isn't always a win, as hinted by the minimum data
size.

I would suppose that there is a set of "heuristics" that are used to
decide whether to multi-thread or not, based on the data size, shape,
layout and the algorithm being implemented. I wasn't very closely
involved, but when this was being developed, there were some very
interesting surprises about what sorts of problems multi-threading
would yield a net gain and what sort of problems ended up being a net
loss.

There's probably a lot of effort being made to avoid ending up with a
slower result when using multiple threads. It might be too
conservative, or the decision might be wrong due to a bug. But it
might even be correct and that changing the data size that least
little bit in this example ends up changing the decision as to whether
to use multiple threads or not. I find it odd, given the data in the
example, but it is possible.

The only way you'll know is to ask ITTVIS why MT was rejected for one
array and not for the other.

Karl

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

