Subject: C++ and CALL_EXTERNAL
Posted by mark.t.douglas on Thu, 29 May 2008 09:40:01 GMT

View Forum Message <> Reply to Message

After an entire evening wasted trying to get IDL to interface with a

DLL I made, | thought I'd jot down the things that | wish | had known

at the beginning, in the hope that it will be useful to someone,
somewhere, sometime. | was using IDL 6.1 on Windows and Microsoft's
Visual C++ Express 2008 compiler; the same procedure will work on
other OSes, mutatis mutadis.

OK, here we go. Suppose we have two functions, written in C++, that we
wish to use from within IDL. We naively start with the following
header:

#ifndef NORMALS_H
#define NORMALS_H

namespace Normals

{

__declspec(dllexport) double InverseCumulative(double x);
__declspec(dllexport) double Cumulative(double x);

}

#endif

After building the DLL and moving it to IDL's working directory, we
type the following into IDL:

x = call_external("MyLib.dll","Cumulative",double(0.5),/all_value,/
d_value,value=[0])

It can't find the function! Why? Because the polymorphism and
overloading features of C++ are usually implemented by mangling your
nice function names into something that looks like a core dump.
Examine your DLL with a program like PEDUMP to figure out what
Normals::Cumulative() is now known as; | get ?
Cumulative@Normals@@YANN@Z . That line noise encodes precise
information about the argument types accepted by the function, believe
it or not. Armed with this information, we type the following into

IDL:

x = call_external("MyLib.dll","?
Cumulative@Normals@@YANN@Z",double(0.5),/all_value,/d_value,value=[0])

Alarmingly IDL crashes! Why? Well, because IDL assumes all functions
follow the prototype

Page 1 of 3 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5295
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=26925&goto=60643#msg_60643
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=60643
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

RETURN_TYPE function_name (int argc, void *argv([])

so Normals::Cumulative() received a totally different argument list to
what it was expecting. So different that it went haywire and took down
IDL. To overcome this difficulty we have to provide "glue" functions
that take IDL's argument list and mangle it appropriately for our
functions. It is important to know how IDL's arg list works. The int

argc bit is easy enough; it tells you how many arguments you have been
passed. The array of pointers may not actually be an array of

pointers, however: if you set the /all_values keyword in

call_external, or set some elements of its values keyword to non-zero
numbers, then the appropriate arguments will be passed by value, and
the appropriate elements of argv[] will not be pointers but values!

Now before we were trying to pass a double by value. However a double
is (on this computer at least) bigger than a pointer, and so we can't

pass that argument by value, because doing so would corrupt some
following pointers. So we must pass the double by reference. We are
now ready to proceed.

Our glue functions have the prototypes

___declspec(dllexport) double _ cdecl InverseCumulative IDL(int argc,
void *argv[]);

___declspec(dllexport) double __cdecl Cumulative_IDL(int argc, void
*argv(]);

within the Normals namespace (the __cdecl bit would allow you to use
the more powerful LINKIMAGE IDL procedure instead of call_external).
Their implementation is

__declspec(dllexport) double __cdecl Cumulative_IDL(int argc, void
*argv(l)

{

double *ptr = (double*) argv[0];

return Cumulative(*ptr);

}

__declspec(dllexport) double __cdecl InverseCumulative _IDL(int argc,
void *argv[])

{

double *ptr = (double*) argv|[O0];

return InverseCumulative(*ptr);

}

and their mangled names are (from PEDUMP)
?InverseCumulative_IDL@Normals@@YANHQAPAX@Z
?Cumulative_IDL@Normals@@YANHQAPAX@Z

Page 2 of 3 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Now call_external has an "auto_glue" faclity that can build the glue
functions for you; it is instructive to write them yourself, at least

at first, | feel. Also note that our glue functions are ferociously

fragile; passing anything other than a single double by reference will
cause problems. This isn't so much of a problem if you clearly
document the fact that the glue function must be called with precisely
correct arguments. Nonetheless we are now in a position to actually
use our DLL from within IDL. After building the DLL with the glue
functions and moving it to where IDL can see it, we can type e.g.

x = call_external("MyLib.dll","?
Cumulative_IDL@Normals@@YANHQAPAX@Z",double(0.3),/d_value,/
cdecl,values=[0])

and everything works.

Page 3 of 3 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

