
Subject: Re: efficient comparing 1D and 3D arrays
Posted by Chris[5] on Wed, 11 Jun 2008 21:24:04 GMT
View Forum Message <> Reply to Message

> I am hoping there is a fell
> swoop with which I can do this in one step; a way to create a [ns, nl]
> bytearr with 0/1 to match the condition that each band for that bixel
> falls within the desired range...

Let me try to understand what you are trying to do:
-data is a datacube of dimensions (nb,ns,nl).
-for each pixel along the first dimension (the one with nb elements),
you want to test whether it is greater than minval and less than
maxval. These are functions of where you are along the first
dimension, so minval and maxval are vectors of length nb.
-you want to create an array, of size ns x nl, such that result[x,y]=1
if data[i,x,y] falls between minval[i] and maxval[i] for all i.

Is this a correct summary? If so, I would recommend:

pro test

nb=3
ns=2
nl=2

data=randomu(seed,nb,ns,nl);just make up data
minval=fltarr(nb)+.1
maxval=fltarr(nb)+.9

;make cubes out of these
minval=rebin(minval,nb,ns,nl)
maxval=rebin(maxval,nb,ns,nl)

print,cube

hit=(data gt minval) and (data lt maxval)
result=total(hit,1) eq nb

print,result

end

Explanation:

You turn minval and maxval into cubes such that every pixel in the

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6462
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=26939&goto=60677#msg_60677
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=60677
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

data cube needs to be between the corresponding pixels in minval and
maxval. You then do a pixel by pixel test of this, returning the 'hit'
cube (ones and zeros). You only care about cuts through the first
dimension which satisfy your bounds for every pixel along that
dimension. Thus, you sum up the cube along the first dimension
(returning an ns by nl array), and test whether or not it equals nb
(meaning every pixel was a hit).

Aside:
I was doing something similar this weekend, and agree with the earlier
poster about weighing the pros and cons of looping vs large array
creation. If you have lots of pixels, allocating the memory for the
minval and maxval cubes will take some time. Looping through every
pixel in the cube is, of course, a dumb thing to do in idl - it would
rather work with arrays than individual elements. However, if you loop
through each PLANE (say, step along the fist dimension), and then at
each step in the loop analyze a 2D array, you will balance IDL's
efficiency at working with arrays with the time penalty associated
with allocating big chunks of your system memory. I have found (to my
surprise) that this kind of looping can be much, much faster than
avoiding the loop altogether. I am trying to quantitatively understand
this behavior more (there are lots of qualitative descriptions of this
here and on David Fanning's website), but the moral seems to be the
following: IDL's 'sweet spot' is to do operations on arrays as large
as possible, AS LONG AS any memory allocation you need to do to allow
such a procedure is small (say a few percent of the total memory you
have available).

-chris

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

