
Subject: Help with program speed (Recursive Merging Function)
Posted by crd319 on Tue, 08 Jul 2008 19:48:49 GMT
View Forum Message <> Reply to Message

I am working on a texture segmentation algorithm.  It works by
segmenting an image into smaller "sub-blocks" of varying size based on
textural features, comparing neighboring "sub-blocks" and merging
those blocks with the lowest "Merger Importance Value".  I can get the
splitting done relatively fast (4 seconds for a 512x512 image).  Im
having a problem with my Merging function.  Let me explain:

I have my project set up so that it segments the image into an array
of pointers, which reference a structure as such

*pt[i] = {block, x1,x2,y1,y2}

where block is the matrix of pixel values in the sub-block and
x1,x2,y1,y2 are locations in reference to the original image.

What I am trying to do is find each neighboring sub-block in the array
(for my 512x512 example contains 208 elements).  I do this by
comparing a cell , pt[i], with every possible match, pt[j] and reading
the x,y coordinates.  It then calculates the MI value and (will
ultimately) put those cells with the lowest MI into a single element
(pointing to an array of pointers)

The code works but operates SLOW!  It takes ~400 seconds to run
through once for my 512x512 image.

NOTE: This is set up for merging single cell but will be used to work
with multiple cells at once.  ie. 2 cells that have previously been
merged are merged with a third.

ALSO: I know I dont have the best programming structure.  Im not in a
Computing Major and our (my Majors) programming exposure is in
Functionality not Efficiency.

FUNCTION Merger_importance, pt
t = systime(1)
bins = 8
values = {block1:ptr_new(), block2:ptr_new(), MI:0.}

MI_arr = [values]

for i=0, n_elements(pt)-1 do begin
   x1_1 = [-1]
   x1_2 = [-1]
   y1_1 = [-1]

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6491
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=27174&goto=61220#msg_61220
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=61220
http://idlcoyote.com/comp.lang.idl-pvwave/index.php


   y1_2 = [-1]

   t1 = *pt[i]
   blk1 = t1.block
   x1_1 = [x1_1,t1.x1]
   x1_2 = [x1_2,t1.x2]
   y1_1 = [y1_1,t1.y1]
   y1_2 = [y1_2,t1.y2]

   x1_1 = x1_1[1:*]
   x1_2 = x1_2[1:*]
   y1_1 = y1_1[1:*]
   y1_2 = y1_2[1:*]
   p1 = n_elements(blk1)
   LBP_C1 = LBP_OVER_C(blk1)
   hist1 = HIST_2D(LBP_C1.LBP, LBP_C1.C, max1=255, max2=bins-1)

   for j=0, n_elements(pt)-1 do begin
      if (i ne j) then begin
         x2_1 = [-1]
         x2_2 = [-1]
         y2_1 = [-1]
         y2_2 = [-1]
         t2 = *pt[j]
         blk2 = t2.block
         x2_1 = [x2_1,t2.x1]
         x2_2 = [x2_2,t2.x2]
         y2_1 = [y2_1,t2.y1]
         y2_2 = [y2_2,t2.y2]

         x2_1 = x2_1[1:*]
         x2_2 = x2_2[1:*]
         y2_1 = y2_1[1:*]
         y2_2 = y2_2[1:*]

         p2 = n_elements(blk2)
         LBP_C2 = LBP_OVER_C(blk2)
         hist2 = HIST_2D(LBP_C2.LBP, LBP_C2.C, max1=255, max2=bins-1)

         for k = 0, n_elements(x1_1)-1 do begin
            for l = 0, n_elements(y1_1)-1 do begin
               for m = 0, n_elements(x2_1)-1 do begin
                  for n = 0, n_elements(y2_1)-1 do begin

                     if (((x1_2[k]+1 eq x2_1[m]) and ((y1_1[l] le
y2_1[n]) and (y1_2[l] ge y2_2[n]))) or $
                        (((x1_1[k] le x2_1[m]) and (x1_2[k] ge
x2_2[m])) and y1_2[l]+1 eq y2_1[n])) then begin

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php


                     p = min([p1,p2])
                     hist1 = hist1+1
                     hist2 = hist2+1
                     G = abs(g_stat(hist1, hist2, bins))
                     struct = {block1: pt[i], block2:pt[j], MI:p*G}
                     MI_arr = [MI_arr, struct]
                     endif
                  endfor
               endfor
            endfor
         endfor

      endif
   endfor
   print, i,"Run time: ", systime(1)-t
endfor
Return, MI

END

If anyone can help speed this up, I would greatly appreciate it.  Or
even give me a better idea for my searching routine other than nested
for loops.

I know FOR loops in IDL are slow but I couldnt think of another way to
organize this.

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

