
Subject: Re: newbie wants to enforce "array conservation"
Posted by Chris[6] on Tue, 22 Jul 2008 02:12:31 GMT
View Forum Message <> Reply to Message

On Jul 21, 4:04 pm, Chris <beaum...@ifa.hawaii.edu> wrote:
> On Jul 21, 2:51 pm, Tom Roche <tlro...@gmail.com> wrote:
>
>
>
>> How to check that two arrays have the same totals, to some tolerance?
>> and to throw an error if they don't? Especially if they are not the
>> same size? (Apologies if these are FAQs, but I've googled and searched
>> the online help and I'm not seeing it.) 3 more detailed questions
>> below:
>
>> I'm massaging netCDF files containing data on emissions over space and
>> time. (Sometimes space is 2D, others 3D.) I want to ensure that I'm
>> not corrupting the emissions, e.g. by conserving mass. I'm guessing a
>> straightforward way to verify conservation is to check that, after
>> each step in the overall process, the sum of emissions in the
>> pre-massage file matches the sum of emissions in the post-massage
>> file. I remember just enough of my undergraduate scientific-computing
>> course to know that I want to match subject to some tolerance. I don't
>> know IDL very well, but I can see
>
>> http://idlastro.gsfc.nasa.gov/idl_html_help/ARRAY_EQUAL.html
>
>> That should work for massages that don't change the size of the data:
>> unfortunately I must also do regridding, which changes the size. For
>> size-invariant massage I'm thinking I should do something like this:
>
>> ; time is the first dimension in all these arrays
>> timeIndex=1
>> ; read pre-massage data into array "before"
>> ; read post-massage data into array "after"
>> ; total before
>> before_total=TOTAL(before,timeIndex,/NAN)
>> badval=WHERE(before_total eq 0, ct)
>> IF ct ne 0 THEN before_total[badval]=0
>> ; total after
>> after_total=TOTAL(after,timeIndex,/NAN)
>> badval=WHERE(after_total eq 0, ct)
>> IF ct ne 0 THEN after_total[badval]=0
>> ; check match including size
>> IF not ARRAY_EQUAL(before_total, after_total, /NO_TYPECONV) THEN
>> <throw error/>
>
>> Does that look right? If so,

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6539
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=27291&goto=61616#msg_61616
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=61616
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>> 1 How does one typically throw a (non-GUI) error in IDL?
>
>> 2 How does ARRAY_EQUAL handle tolerance? I was somewhat surprised that
>> there was not, e.g., a keyword. Am I missing something?
>
>> If not, how should size-invariant array matching be done?
>
>> For size-variant massage (i.e. SIZE(input) ne SIZE(output)) one cannot
>> use ARRAY_EQUAL, because it checks that array sizes match. (Or am I
>> missing something?) So I'm thinking I should verify size-variant
>> massages by just matching the scalar sums, e.g.
>
>> ; read pre-massage data into array "before"
>> ; read post-massage data into array "after"
>> ; scalar total before
>> before_total=TOTAL(before,/NAN)
>> ; scalar total after
>> after_total=TOTAL(after,/NAN)
>> ; check match ignoring size
>> diff=ABS(before_total-after_total)
>> tolerance=<some small float/>
>> IF diff gt tolerance THEN <throw error/>
>
>> Does that look right? If so,
>
>> 3 How does one determine a good tolerance value?
>
>> If not, how should size-variant array matching be done?
>
>> TIA, Tom Roche <Tom_Ro...@pobox.com>
>
> Preliminary aside: lines like this
>
>> badval=WHERE(after_total eq 0, ct)
>> IF ct ne 0 THEN after_total[badval]=0
>
> aren't necessary (you look to see if the array has any zeroes and, if
> it does, you set those zeroes to zero!)
>
> I don't think you want array_equal as, like you mention, it checks for
> strict equality and not 'almost equality.' Your method of computing
> the scalar total before and after is a good approach- I would use this
> over array comparisons (unless you want to perform a spatially
> resolved check to see if flux is conserved).
>
> I think the tolerance you use depends on the kinds of data massaging
> you are doing. Floating point operations should preserve calculations

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> to at least 5-6 decimal places. So the error induced by summing n
> pixels after each has been corrupted by a floating point operation
> would be something like sqrt(n)*10^-5 or so. Anything smaller than
> this may simply be due to finite machine precision. Errors much
> greater than this might be a sign of a bug.
>
> Also, you may be able to relax that restriction a bit if you know that
> the uncertainty in your data is much larger than a part in 10^5.
> Really, as long as your tolerance is some small fraction of the
> uncertainty in the expected total, flux non-conservation (even if it
> is due to a bug or sloppy calculation) doesn't matter.
>
> chris
>
> As far as error handling goes, read up on CATCH.

Another potential pitfall:
Make sure you know what the units of emission are. If, for example,
you regrid emission data on a grid that has 4x larger pixels, and the
emission is something like power/solid angle, then you want the sum of
the regridded array to be 4x smaller. the total power in each image is
the value per pixel times the solid area of the pixel, summed up.
Simply summing two arrays on different scales doesn't do the 'multiply
by pixel size' step

chris

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

