
Subject: Re: newbie wants to enforce "array conservation"
Posted by Chris[6] on Tue, 22 Jul 2008 02:04:01 GMT
View Forum Message <> Reply to Message

On Jul 21, 2:51 pm, Tom Roche <tlro...@gmail.com> wrote:
> How to check that two arrays have the same totals, to some tolerance?
> and to throw an error if they don't? Especially if they are not the
> same size? (Apologies if these are FAQs, but I've googled and searched
> the online help and I'm not seeing it.) 3 more detailed questions
> below:
>
> I'm massaging netCDF files containing data on emissions over space and
> time. (Sometimes space is 2D, others 3D.) I want to ensure that I'm
> not corrupting the emissions, e.g. by conserving mass. I'm guessing a
> straightforward way to verify conservation is to check that, after
> each step in the overall process, the sum of emissions in the
> pre-massage file matches the sum of emissions in the post-massage
> file. I remember just enough of my undergraduate scientific-computing
> course to know that I want to match subject to some tolerance. I don't
> know IDL very well, but I can see
>
> http://idlastro.gsfc.nasa.gov/idl_html_help/ARRAY_EQUAL.html
>
> That should work for massages that don't change the size of the data:
> unfortunately I must also do regridding, which changes the size. For
> size-invariant massage I'm thinking I should do something like this:
>
> ; time is the first dimension in all these arrays
> timeIndex=1
> ; read pre-massage data into array "before"
> ; read post-massage data into array "after"
> ; total before
> before_total=TOTAL(before,timeIndex,/NAN)
> badval=WHERE(before_total eq 0, ct)
> IF ct ne 0 THEN before_total[badval]=0
> ; total after
> after_total=TOTAL(after,timeIndex,/NAN)
> badval=WHERE(after_total eq 0, ct)
> IF ct ne 0 THEN after_total[badval]=0
> ; check match including size
> IF not ARRAY_EQUAL(before_total, after_total, /NO_TYPECONV) THEN
> <throw error/>
>
> Does that look right? If so,
>
> 1 How does one typically throw a (non-GUI) error in IDL?
>
> 2 How does ARRAY_EQUAL handle tolerance? I was somewhat surprised that

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6539
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=27291&goto=61617#msg_61617
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=61617
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> there was not, e.g., a keyword. Am I missing something?
>
> If not, how should size-invariant array matching be done?
>
> For size-variant massage (i.e. SIZE(input) ne SIZE(output)) one cannot
> use ARRAY_EQUAL, because it checks that array sizes match. (Or am I
> missing something?) So I'm thinking I should verify size-variant
> massages by just matching the scalar sums, e.g.
>
> ; read pre-massage data into array "before"
> ; read post-massage data into array "after"
> ; scalar total before
> before_total=TOTAL(before,/NAN)
> ; scalar total after
> after_total=TOTAL(after,/NAN)
> ; check match ignoring size
> diff=ABS(before_total-after_total)
> tolerance=<some small float/>
> IF diff gt tolerance THEN <throw error/>
>
> Does that look right? If so,
>
> 3 How does one determine a good tolerance value?
>
> If not, how should size-variant array matching be done?
>
> TIA, Tom Roche <Tom_Ro...@pobox.com>

Preliminary aside: lines like this

> badval=WHERE(after_total eq 0, ct)
> IF ct ne 0 THEN after_total[badval]=0

aren't necessary (you look to see if the array has any zeroes and, if
it does, you set those zeroes to zero!)

I don't think you want array_equal as, like you mention, it checks for
strict equality and not 'almost equality.' Your method of computing
the scalar total before and after is a good approach- I would use this
over array comparisons (unless you want to perform a spatially
resolved check to see if flux is conserved).

I think the tolerance you use depends on the kinds of data massaging
you are doing. Floating point operations should preserve calculations
to at least 5-6 decimal places. So the error induced by summing n
pixels after each has been corrupted by a floating point operation
would be something like sqrt(n)*10^-5 or so. Anything smaller than

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

this may simply be due to finite machine precision. Errors much
greater than this might be a sign of a bug.

Also, you may be able to relax that restriction a bit if you know that
the uncertainty in your data is much larger than a part in 10^5.
Really, as long as your tolerance is some small fraction of the
uncertainty in the expected total, flux non-conservation (even if it
is due to a bug or sloppy calculation) doesn't matter.

chris

As far as error handling goes, read up on CATCH.

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

