
Subject: Re: Incredible interaction between graphics and DLM: SOS!
Posted by Allan Whiteford on Tue, 05 Aug 2008 16:40:01 GMT
View Forum Message <> Reply to Message

Fabio,

IDL will be sending signals back and forward with all sorts of other
stuff to handle graphics. Note that the man page for sleep says:

"sleep() may be implemented using SIGALRM; mixing calls to alarm() and
sleep() is a bad idea.

Using longjmp() from a signal handler or modifying the handling of
SIGALRM while sleeping will cause undefined results."

The IDL command line will have signals to deal with the graphics
subsystem which can/will cause sleep(20) to return early. There may also
be "longjmp"s involved.

This shouldn't affect most other things you want to do, for instance if
instead of sleep(20) you called a function which happened to take 20
seconds to do something then it should not return early.

Pyro is presumably also using signals and the like to handle
communication; I don't know anything about it.

Not really a solution to your problem but maybe it'll help you to look
in the right place. Mess with the signal handlers at your own risk though!

Thanks,

Allan

fabio.tosetti@gmail.com wrote:
> I have a very simple file set (see below), with only one function,
> idl_test(), written just to isolate the problem.
>
> The following instruction simply sleep for 20 seconds and correctly
> returns:
>
> IDL> print, idl_test()
>
>
> The following sequence cause the idl_test() to return BEFORE the
> expected time:
>
> IDL> err = dialog_message("A dialog")
> IDL> print, idl_test()

Page 1 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5781
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=27378&goto=61878#msg_61878
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=61878
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> The idl_test() returns after about 3-4 seconds.
> The same happens if I plot a graphic before calling idl_test().
>
> Of course in my application I don't want to sleep(), but to call some
> Python code that do remote communication (Pyro), but the result is
> exactly the same, and it's very frustrating :-(...
>
> THE EXAMPLE FILES ARE:
>
> 1) idl_test.dlm:
>
> MODULE idl_test
> DESCRIPTION idl test library
> VERSION 1.0
> SOURCE LB
> BUILD_DATE AUG 05 2008
>
> FUNCTION IDL_TEST	0 0
>
> 2) idl_test.h:
>
> #ifndef IDL_TEST_H_INCLUDE
> #define IDL_TEST_H_INCLUDE
>
> extern "C"{
> 	int IDL_Load(void);
> }
>
> #endif /*IDL_TEST_H_INCLUDE*/
>
>
> 2) idl_test.cpp file:
>
> #include "idl_test.h"
>
> #include <stdio.h>
> #include <string.h>
> #include <errno.h>
> #include <stdlib.h>
> #include <sys/types.h>
> #include <unistd.h>
>
> extern "C"{
> 	#include "idl_export.h"
> }
>
> IDL_VPTR idl_test(int lArgc, IDL_VPTR Argv[]) {

Page 2 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> 	// TEST
> 	int sec = 20;
> 	printf("Sleeping for %d seconds... will timeout earlier!\n", sec);
> 	sleep(sec);
> 	return IDL_StrToSTRING("idl_test returned before 20 seconds!!!");
> }
>
>
> int IDL_Load(void) {
>
> 	// These tables contain information on the functions and procedures
> 	// that make up the TESTMODULE DLM. The information contained in
> these
> 	// tables must be identical to that contained in testmodule.dlm.
> 	//
> 	static IDL_SYSFUN_DEF2 function_addr[] = {
>
> 		{ {(IDL_SYSRTN_GENERIC) idl_test}, "IDL_TEST", 0, 0, 0, 0},
>
> 	};
>
> 	// Register my routines: the routines must be specified exactly
> the same
> 	// as in .dlm.
> 	return IDL_SysRtnAdd(function_addr, TRUE,
> IDL_CARRAY_ELTS(function_addr));
> }
>
> 4) Makefile:
>
>
> all: idl_test.so
>
> # ITT had the great idea of changing the name of
> # the installation directory since idl6.3
> # So if you have idl < 6.4 use
> #IDLDIR = /usr/local/rsi/idl/external/include
> # else use
> IDLDIR = /usr/local/itt/idl/external/include
>
> CPPFLAGS = -Wall -W -Wreturn-type -Wunused -D_GNU_SOURCE
> MORE_INCLUDE = -I$(IDLDIR) -I/usr/include/python
>
> %.o:%.h
>
> .cpp.o:
> 	g++ $(CPPFLAGS) $(MORE_INCLUDE) -c $< -o $@

Page 3 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> idl_test.so: idl_test.o $(IDLDIR)/idl_export.h
> 	g++ $(CPPFLAGS) -shared -o idl_test.so idl_test.o -lstdc++
>
> clean:
> 	rm -f *.o *.so

Page 4 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

