Subject: Re: CUDA version of RANDOMN? Posted by hotplainrice@gmail.co on Fri, 15 Aug 2008 15:16:37 GMT View Forum Message <> Reply to Message

```
On Aug 16, 12:28 am, wlandsman <wlands...@gmail.com> wrote:
> On Aug 15, 10:11 am, "hotplainr...@gmail.com" <hotplainr...@gmail.com>
> wrote:
>
>
>
   Hey guys,
>>
>> I need to write a kernel to replace the IDL RANDOMN POISSON
>
>> for loop
    for loop
      for loop
                  c = data[x,y,b]
>>
                  if c at 0.0 then begin
>>
                       n = RANDOMN( seedP, POISSON=c )
>>
                  endif else begin
>>
                       n = 0
>>
                  endelse
>>
                  data[x,y,b] = n
>>
      endfor
>>
    endfor
>>
>> endfor
>> Could someone point out an example code of how RANDOMN POISSON so that
>> I can implement it in CUDA?
  Your best bet is to probably look at the Poisson generating algorithm
  in "Numerical Recipes in C" if you are going to implement it CUDA.
> I have implemented the "Numerical Recipes in C" algorithm into the IDL
> procedure poidev.pro at http://idlastro.gsfc.nasa.gov/ftp/pro/math/poidev.pro.
 Although poidev.pro is normally slower than calling randomn(POISSON=),
> it has advantages for just the problem you describe, which can be
  written as simply
>
        data = poidev(data)
>
  rather than using a triple FOR loop. -- Wayne
Thanks for the reply. I was about to use your code until I discovered
```

the problem of achieving this.

```
c = data[x,y,b]
```

```
if c gt 0.0 then begin  \begin{array}{c} n = RANDOMN(\ seedP,\ POISSON=c\ ) \\ endif \ else \ begin \\ n = 0 \\ endelse \end{array}
```

I guess the only way is to code a poisson kernel and then do tiling on the data.