Subject: Re: Need help with an Iterative solution in IDL (relative newb question)
Posted by Chris[6] on Fri, 15 Aug 2008 02:25:43 GMT

View Forum Message <> Reply to Message

On Aug 14, 2:45 pm, mbwel...@gmail.com wrote:

> On Aug 14, 2:20 pm, Chris <beaum...@ifa.hawaii.edu> wrote:

>

>

>

>> On Aug 14, 9:56 am, mbwel...@gmail.com wrote:

>

>>> On Aug 14, 11:50 am, Brian Larsen <balar...@gmail.com> wrote:
>

>>>> Matt,

>

>>>> this isn't anywhere near enough information to provide a coherent and
>>>> meaningful answer.

>

>>>> - What exactly are you trying to do?

>>>> - What have you tried?

>>>> - What bits of code are working and not?

>

>>>> Cheers,

>

>>>> Brian

>

S —

>>>> Brian Larsen

>>>> Boston University

>>>> Center for Space Physicshttp://people.bu.edu/balarsen/Home/IDL
>

>>> Guess | should be more specific then :)

>

>>> Here is my code (non iterative):

>>> a= 3.6e007 ; area of region in meters"2

>>> 0= (60*!pi/180) ; fault dip angle in degrees

>>> c= 6e-003 ; scaling factor

>>> t= 50e003 ; elastic lithosphere thickness in meters
>>> v= (a*t) ; volume of region in meters”*3

>>> x=5e003 ; depth of faulting in meters, 5-7km for normal
>>> faults, ~30km for thrust faults

>

>>> h= (x/sin(0)) ; depth of faulting in meters

>>> u=3 ; fault aspect ratio: Length/Height(down dip)

>>> =2o0r3

>>> kns=(sin(o)*cos(0)/v) ; horizontal normal strain constant for small
>>> faults

>>> knl=(c*cos(0)*x"2/v/sin(0)) ; horizontal normal strain

Page 1 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6539
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=27394&goto=62014#msg_62014
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=62014
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>>
>>>
>>>
>>>
>>>

>>>
>>>
>>>

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

>>>
>>>
>>>
>>>
>>>

>>>
>>>
>>>
>>>
>>>
>>>
>>>

>>>
>>>

>>>
>>>
>>>
>>>
>>>
>>>

>>>

constant for large faults
kvs=(-sin(0)*cos(0)/v) ; vertical normal strain constant for small
faults

kvl=(-cos(0)/Vv) ; vertical normal strain constant for large
faults
ind_small = where(ar_plan[1,*] It 2*x) ; select faults such that L

< 2X
ind_large = where(ar_plan[1,*] ge 2*x) ; select faults such that L> 2x

ar_plan_small = ar_plan[*,ind_small] ; place in matrice with
identifer

ar_plan_large = ar_plan[*,ind_large] ; place in matrice with
identifer

Ilc_small=ar_plan_small[1,*] ; select only lengths to sum for
small faults

Ilc_large= ar_plan_large[1,*] ; select only lengths to sum for
large faults

tl_small = total(Ilc_small*3) ; sum lengths according to
kostrov summation, small faults

tl_large = total(Ic_large) ; sum lengths according to kostrov

summation, large faults

ens= (kns*c/u)*tl_small ; horizontal normal strain
for small faults

enl= knl*tl_large ; horizontal normal strain for large
faults

e _t=ens+enl ; total horizontal normal strain

| need to vary the parameters o,c,t,x and u with in a certain range
(e.g. 0= 50-80 degrees) in order to reproduce e_t (total horizontal
normal strain) to within ~ +-10% and | need all the possible
combintation saved to an ascii file, or some other output. Where
ar_planis a FLOAT = Array[2, 129], different arrays have different
dimensions and | have multiple arrays, but # of columns [2] should
remain constant at this stage.

I'm having some trouble getting started, but will probably have some
issues in the implementation as well :)

As an aside, | have another issue where, for example, ind_small = -1

for no returned results instead of 0. This causes:

% Attempt to subscript AR_PLAN with IND_SMALL is out of range and the
program stops running.

I would like this to run even with no returned results. Does anyone

know how to do this?

~Matt

Page 2 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

VVVVVVVVVYVYVYVYVYV

| think the main difficulty you are going to run into is that, with 5
independent variables, exhaustively searching the entire search space
for solutions may not feasible. The most straightforward approach, of
course, is to have five nested loops over each of your variables and
checking to see if that combination of variables satisfies your
constraint of reproducing e_t. However, even if you just tested 100
values for each variable, that would be 10710 total steps in the loop.
Furthermore, such an approach is extremely inefficient because it has
no sense of 'how close' a given combination of variables are- it will
spend the vast majority of the time checking ridiculous candidates.

There are a number of search algorithms that you could look into.
Probably the easiest is some sort of monte carlo search like the
following: Define a ‘fitness function' for a combination of

independent variables to be how far off the calculated e_t is from the
goal e_t. You now want to minimize this error. Start with some random
values for each of your variables, and use some local minimum finding
algorithm (there is a built in amoeba function for 1 variable, but

look into algorithms like steepest ascent hill climbing, downhill
simplex, etc) to find a local error minimum. If the error is small
enough, count that as an acceptable solution. If not, throw it away.
Now start with new random values for the variables, and repeat. A book
like Numerical Recipes by Press et al describes such algorithms.

The problem with this approach is that it is not guaranteed to find
ALL acceptable combinations of values - that is only possible with an
exhaustive search which is probably not feasible.

As for your problem of WHERE returning -1, use the count keyword in
where. Then, test for whether or not that count is zero and, if it is,
skip that case.

chris

I'm trying to fix the where statement returning -1, here is what I've
tried thus far:

ind_small = where(ar_plan[1,*] It 2*x,count) ; select faults such
that L < 2x

if count ge 0 then ar_plan_small=ar_plan[*,ind_small] else
ar_plan_small=0

ar_plan_small

but I'm still getting the same error, I'm sure | have the syntax
wrong. Unfortunately I'm not quite at the level to trouble shoot this
myself, confidently.

| have ordered the book suggested, | would imagine that it would come
in handy very soon, but for the shear learning experience of it |

Pag

e 3 0of 5---- CGenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> would like to try it in IDL first (plus research waits for no amazon

> order). | can limit the increments for each variable to make it more

> manageable (less than 10710 total steps), | just need some help and/or
> examples to illustrate how to create five nested loops for each

> variable, with each bounded condition and set increment that satisfy

> e_tthat are recorded to an ASCII file. e.g. o = 50-80, del o0 = 5;

> t=5-100, del t = 10; etc...

>

> Thanks,

> ~Matt

The where problem probably comes from the fact that you are selecting
indices from the sub-array ar_plan[1,*] but indexing the array
ar_plan[*,indsmall]. In other words, you select ROWS of interest (IDL

is column major, so array]i,j] is the ith column, jth row) and then

index those COLUMNS. If there are more rows than columns, you may get
an 'array index out of bounds' error. If you are still having issues,

try including the output of the following lines in your next post:

help,ar_plan
help,count
print,max(ind_small)
print,min(ind_small)

Also remember that IDL is zero-indexed so, if you are trying to access
the first column of something, you would use ar_plan[0,*] and not
ar_plan[1,*]

A clunky nested for loop for three variables looks something like this

openw,1,'output.dat’; this opens a file for writing
for a=alow, ahigh, astep do begin
for b=blow, bhigh, bstep do begin
for c=clow, chigh, cstep do begin
if (f(a,b,c) ge goal-error) && (f(a,b,c) le goal+error)
then begin
printf,1,a,b,c,format="(3f9.3)" ; records variables to
three decimal places
endif
endfor
endfor
endfor

close, 1 ;close the file
here, f(a,b,c) is whatever combination of a b and c that's meant to

reproduce the number goal to within the number error. the lows and
highs are your lower and upper bondaries for a,b, and ¢, and the steps

Page 4 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

are how much to increment each time.

Please let me stress that this is not only an inefficient algorithm

(it wastes time checking hopeless candidates), but one for which IDL
will run very slowly (IDL hates extensive looping). Posting it here
actually makes me feel a little dirty. | hope David Fanning doesn't
see it...

chris

Page 5 of 5 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

