Subject: Re: Matching Lats and Lons from two arrays Posted by Conor on Tue, 26 Aug 2008 18:42:57 GMT

View Forum Message <> Reply to Message

```
On Aug 26, 2:41 pm, Conor <cmanc...@gmail.com> wrote:
> On Aug 26, 11:47 am, wilsona <awils...@bigred.unl.edu> wrote:
>
>
>> I have 2 seperate arrays of Latittudes and Longitudes.
>> CS_LATLON(0,4607) is one latitude array and dlat(192,139) is the
>> other
>> CS_LATLON(1,4607) is one longitude array and dlon(192,139) is the
>> other.
>> I want to index through each element in both CS_LATLON arrays and
>> find
>> which point(s) in the dlat and dlong arrays are closest.
>> I tried using nested loops but that gave me 12 million+ loops which
>> is
>> too many for my liking. I now am trying search2d
>> NUM PNTS = N ELEMENTS(CS LATLON(0, *)) - 1
    FOR J = 0, NUM_PNTS DO BEGIN
       CLOSE\_LATS = SEARCH2D(dlat, 0, 0, CS\_LATLON(0,J),
>>
  CS_LATLON(0,J), INCREASE=0.5,
                    DECREASE=0.5)
>>
       lat1 = CS_LATLON(0,J) * PI / 180.0
>>
       FOR K = 0, CLOSE LATS DO BEGIN
            lat2 = dlat(K) * PI / 180.0
>>
            d_{long} = CS_{LATLON(1,J)} - dlon(K)) * PI / 180.0
>>
            DISTANCE = 10800.0 / PI * acos(sin(lat1) * sin(lat2))
>>
>> +
  cos(lat1) *
                          cos(lat2) * cos(d_long))
>>
        ENDFOR; K
>>
    ENDFOR: J
>> This is not working they way I would like. Any suggestions on this
>> would be greatly appreciated.
  I often have to match up two star fields, which is pretty much the
>
  same thing. You can download the routine I use here:
  astro.ufl.edu/~cmancone/pros/qfind.pro
>
>
> Here's the source. It basically just uses histogram to bin everyhing
  and then searches one bin left and right:
> function gfind,x1,y1,x2,y2,posshift=posshift
```

```
if n_elements(posshift) eq 0 then posshift = 1
> n1 = n_elements(x1)
> n2 = n_elements(x2)
  ; this is where I'll store the result
  res = lonarr(2,n1)
  ; this mask list will tell us if an entry is from list one or list two
  allinds = lindgen(n2)
  ; the histogram will tell us how many stars left and right we have to
> check
> hist = histogram(x2,binsize=posshift,omin=minx,reverse_indices=ri)
  ; calculate which bin each x went into
> bins = floor((x1-minx)/posshift)>0
> nbins=n_elements(hist)
> f = 0L
> for i=0L,n1-1 do begin
        ; figure out which bin this star is in
>
        bin = bins[i]
>
>
        ; adjust the indexes accordingly
>
        inds = ri[ri[(bin-1)>0]:ri[((bin+2)<nbins)]-1]
>
        ; calculate the distance from this star to its neighbors
>
        dist = sqrt((x2[inds]-x1[i])^2 + (y2[inds]-y1[i])^2)
>
        ; get the closest star within posshift that is from the second list
>
        mindist = min( dist, wm )
>
        ; no stars found
>
        if mindist gt posshift then continue
>
>
       ; record result
>
        res[*,f] = [i,inds[wm]]
        ++f
>
> endfor
  if f eq 0 then return,-1
>
  ; get rid of any blank entries
  res = res[*,0:f-1]
> return,res
```

> end

I asked this same question before. You might find the discussion useful.

http://groups.google.com/group/comp.lang.idl-pvwave/browse_t hread/thread/629cbb2a852c5371/b568d74f6d539b79?hl=en&lnk =gst&q=That+works+well+enough%2C+but+is+certainly+not+op timal.++lt+uses+the#b568d74f6d539b79