Subject: Re: FFT and ROTATE

Posted by Wox on Thu, 04 Sep 2008 11:55:27 GMT

View Forum Message <> Reply to Message

On Wed, 3 Sep 2008 15:20:19 -0700 (PDT), wheinz@gmail.com wrote:

```
> Hello,
```

>

- > I have been wrestling with the FFT and ROTATE functions recently. One
- > of the properties of the Fourier transform is that the transform of a
- > rotated object is equal to the rotation of the transform of the
- > unrotated object. To test this in IDL, I took the FFT of an nxn array
- > (called image) and the FFT of that array rotated 90 degrees, image90 =
- > ROTATE(image,1). Then, I sorted the real and imaginary parts of the
- > coefficients of the results of the FFTs and compared the sorted
- > values. I expected that the sorted list of real parts from the FFT of
- > the original and rotated arrays would be identical, and that the same
- > would be true for the imaginary parts. This is not the case. The sets
- > of the magnitudes of the coefficients are equal, as expected.

First of all, care must be taken when rotating the fourier transform. Check IDL help on this: you have to shift with half the image size in both directions. I also noticed that it only works with uneven image sizes (i.e. rotation around the center pixel). Anyway, check the code below:

```
pro rotFFTtest
 ::load an image
 fn = filepath('md1107g8a.jpg',SUBDIRECTORY='examples/data')
 image=bytarr(251,251)
 image[0,0]= read_image(fn)
 image90 = rotate(image, 1)
 ; display the images
 window.0
 tvscl,image,0
 tvscl,image90,1
 n = size(image,/dim)
 nfreq=n/2+1; # positive freq in each dim
 nfreq_m=nfreq-1-(~(n mod 2)); # negative fequencies in each dim
 ;;take fft of image, then get the real and imaginary parts
 f = fft(image)
 f = shift(f,-nfreq[0],-nfreq[1])
```

```
f90_1 = rotate(f,1)
f90_1 = shift(f90_1,nfreq[0],nfreq[1])

;;take the fft of image90 then get the real and imaginary parts.
f90_2 = fft(image90)

tvscl,fft(f90_1,/inverse),2
tvscl,fft(f90_2,/inverse),3
end
```