Subject: Re: Returning a struct containing variable-length arrays
Posted by franzpx125 on Wed, 17 Sep 2008 21:01:24 GMT

View Forum Message <> Reply to Message

On 17 Set, 10:46, Nigel Wade <n...@ion.le.ac.uk> wrote:

>

>>
>

>>
>>
>>
>>
>

>>
>

>>
>>
>>
>>
>>
>

>>

V V
VvV V

VVVVVVVVVVVVVVVVVYVYVYVYVYVYV

franzpx125 wrote:
Hi!

Within my DLM, | need to return a struct containing two arrays but the

length of the arrays is known only at run-time. Which is the correct

way to write the DLM code? | think | have to use IDL_MAX_ARRAY_DIM and
| defined:

static IDL_MEMINT my_tags_dims[] = { 1, IDL_MAX_ARRAY_DIM };

static IDL_STRUCT_TAG_DEF my_tags[] = {

{"X", my_tags_dims, (void *) IDL_TYP_DOUBLE },
{"Y", my_tags_dims, (void *) IDL_TYP_DOUBLE },
{0}

3

but | don't know how to fill the fields of this struct. Any help?

Thanks,
Brun Francesco

You basically have two choices depending on whether you want to use your own
memory storage allocated by your DLM code to hold the structure data, or have
IDL allocate its own memory and copy the values into that. Each method has its
own set of advantages and caveats/gotchas.

If you use your own memory allocation then that memory has to persist after the
DLM routine returns. This either means it has to be declared static (but since

you want to use variable length arrays this isn't possible) or allocated by

malloc. Using this method means that you are responsible for freeing the memory
when IDL has finished with it. If it is simple throw away code which will only

be used occasionally, and the function isn't called many times, and doesn't
allocate much memory, you can ignore this but you *will* have a memory leak. To
cure this you need to implement the callback routine, a function pointer to

this is passed into the IDL_ImportArray function so that it can free whatever
memory you allocate.

If you create an IDL struct using your own memory then you don't have to worry
about copying the data into the structure. If you use IDL_MakeStruct so that
IDL allocates the storage (and handles de-allocation) then you do have to copy
the data into that memory. This is a little tricky.

In the first case, allocating your own storage, the sequence is to first

Pag

el of 2 ---- CGenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6598
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=27578&goto=62521#msg_62521
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=62521
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

VVVVVVVVVVVYVYVYVYVYV

determine how much storage is required. Then you set your dimensions arrays
appropriately. Next you create the structure with IDL_MakeStruct and finally
import your data into the structure using IDL_ImportArray. You are responsible
for writing a callback function to free this memory when IDL has finished with
the variable.

To get IDL to handle the allocation the first two steps are the same. Then,

rather than importing your own data you use IDL_MakeTempStruct to create a IDL
temporary variable (which you can pass back to IDL). The tricky part is
determining where to put your data. To do this you can use the function
IDL_StructTagIinfoByName, which returns the byte offset into the struct where

the data for that tag is located. Then it's a case of some hairy pointer

manipulation to write the data into the structure.

Nigel Wade

Thank you so much for your exhaustive explanation. As you can notice
from a previous post | adopted the second solution and although
results in slower code with greater memory occupation, | think it's
cleaner without a callback function and more coherent with other
routines included in my DLM. Thanks again.

Brun Francesco

Page 2 of 2 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

