
Subject: Re: Optimising A = B+C?
Posted by davis on Sun, 02 Jun 1996 07:00:00 GMT
View Forum Message <> Reply to Message

On Fri, 31 May 1996 02:24:03 GMT, Karl Glazebrook <kgb@aaoepp.aao.gov.au>
wrote:
 : Does anyone know how IDL optimises A=B+C where
 : A,B and C are arrays?
 :
 : I did a test a while ago and it was several times faster
 : than C code along the lines of:
 :
 : i=n;
 : while (i--)
 : *a-- = *b-- + *c--

Although I have no proof, I believe that the above can be coded to run
faster, e.g.,

 for (i = 0; i < n; i++) a[i] = b[i] + c[i];

Also, if IDL arrays are allocated with an even number of elements (with the
last one padded for odd sized arrays), this is faster:

 for (i = 0; i < n; i++)
 {
 a[i] = b[i] + c[i];
 i++;
 a[i] = b[i] + c[i];
 }

 :
 : (This was on a 2048x2048 array and everything fiited into
 : physical memory.)
 :

It also depends upon how your two-dimensional array was implemented. One
common C approach is to use, e.g.,

 double **a;
 unsigned int i;

 a = malloc (2048 * sizeof (double *));
 for (i = 0; i < 2048; i++)
 a[i] = malloc (2048 * sizeof(double));

Now consider adding such arrays together. One might code this as

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=934
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=4237&goto=6345#msg_6345
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=6345
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 for (i = 0; i < 2048; i++)
 {
 for (j = 0; j < 2048; j++)
	 {
	 a[i][j] = b[i][j] + c[i][j];
	 }
 }

I am not sure how many compilers will optimize this. For that reason, I
never code loops like the above. Instead, I always do

 for (i = 0; i < 2048; i++)
 {
 double *ai, *bi, *ci;
	ai = a[i]; bi = b[i]; ci = c[i];
 for (j = 0; j < 2048; j++)
	 {
	 ai[j] = bi[j] + ci[j];
	 }
 }

Finally, if you simply create such arrays via:

 double a[2048][2048]; /* this is just a 2048*2048 block of doubles */

then you might be tempted to perform the addition as

 for (i = 0; i < 2048; i++)
 {
 for (j = 0; j < 2048; j++)
	 {
	 a[i][j] = b[i][j] + c[i][j];
	 }
 }

The problem with this is that it is not very friendly to your CPU cache
because the loop over j does not deal with neighboring values in the array.
As a result, it is best to calculate the sum for these types of arrays as:

 double *aa, *bb, *cc;
 unsigned int i;

 aa = (double *) a;
 bb = (double *) b;
 cc = (double *) c;

 for (i = 0; i < 2048*2048; i++)
 {

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 aa[i] = bb[i] + cc[i];
 }
--
John E. Davis Center for Space Research/AXAF Science Center
617-258-8119 MIT 37-662c, Cambridge, MA 02139
http://space.mit.edu/~davis

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

