Subject: Re: Quaternion spherical interpolation in PV-Wave Posted by Craig Markwardt on Wed, 12 Nov 2008 07:34:10 GMT

View Forum Message <> Reply to Message

On Nov 11, 5:18 pm, ez5...@gmail.com wrote:

- > I have been been a user of PV-Wave for the last seven years. Let me
- > say here that without this newsgroup's help, I probably wouldn't have
- > lasted seven months. I've learned a great deal from all the valuable
- > posts and been inspired to implement many routines. It's time to
- > donate back.
- > PV-Wave doesn't have any quaternion routines. Craig Markwardt does.
- > I've implemented his routines, but the only one that needed some
- > tweaking was QTERP. Thanks to Craig for validating my results.

Hello, I think I recognize you, based on the subject of your post. Thanks for your contribution! I'm glad the general algorithm could work for PV-WAVE, and you contributed your results back to the community. In a way, though, I'm kind of sad that the function was completely re-written, when only a few lines really changed. A few comments below.

Craig

- > function qterp, t0,q0,t1,qdiff=qdiff,reset=reset,slerp=slerp
- > : This function has been modified for implementation
- > ; in PV-Wave from the original written by Craig Markwardt.
- > ; Many thanks to him for his help verifying this implementation.
- > ; All other quaternion routines are as originally written.
- > ng=n elements(q0)/4
- > if ng eg 0 then begin
- print, 'no q input, stopping...'
- return, -1 >
- > endif
- if ng eq 1 then return,rebin(reform(q0,4,1),4,n_elements(t1))
- > if keyword set(slerp) then begin
- if n_elements(qdiff)/4 ne nq-1 or keyword_set(reset) then begin
- qdiff=qtmult(q0(*,0:nq-2),/inv,q0(*,1:*))>
- ;; QTMULT actually has /INV1 and /INV2 keywords, should be /INV1
- wh=where(qdiff(3,*) It 0,ct)
- if ct gt 0 then gdiff(*,wh)=gdiff(*,wh) >
- ;; Above line was mis-translated, should be,
- if ct gt 0 then qdiff(*,wh)=-qdiff(*,wh)
- endif >
- ii=floor(mgh_locate(t0,xout=t1)) < (nq-2) > 0; mark hadfield
- hh=(t1-t0(ii)/(t0(ii+1)-t0(ii))
- return,qtmult(q0(*,ii),qtpow(qdiff(*,ii),hh))
- > endif

```
> q1=(q0(*,0)#t1)*0
```

- > for i=0,3 do q1(i,*)=spline(t0,q0(i,*),t1) > tot=sqrt(total(q1^2,d=0)) > for i=0,3 do q1(i,*)=q1(i,*)/tot

- > return,q1
- > end
- >
- > Regards,
- > SpinMan