Subject: Re: inverse gradient

Posted by pariais on Fri, 28 Nov 2008 16:10:30 GMT

View Forum Message <> Reply to Message

erano wrote:

```
>>
>>>> "inverse" meaning what for a vector-field?
>>
>>>> Paolo
>>
>>> "inverse" is the opposite operation for gradient.
>>> The inputs are 2D gradient images (dX and dY), where high values are
>>> large changes in the "inverse gradient" image, and zeros are stable
>>> (no changes) in the "inverse gradient".
>>
>>> Eran
>>
>> I would never use this in production code, but here's a hack that will
   give you something to look at:
>> scalarfield = total(dX, /cumulative, 1) + total(dY, /cumulative, 2)
>>
   The real solution is to replace those totals with actual integrals.
>>
>> -Jeremy.
  Thanks,
> It's the simplest way. it's basicly works but with errors.
> I found few articlies about "inverse gradient" on the web, and the
> problem is very complex and the simple MATLAB function (from matlab
> exchange) is expensive (memory).
```

While that is true in general, the gradient operatiom (which is a linear

and therefore can be represented as a matrix operation) is a matrix that

> The main problem is to solve A*F=V where A is M*N matrix, V is vector

consist only of diagonal and one-row above diagonal elements.

Therefore, there is no need to solve the full matrix equation, but one can

use simpler methods (i.e. in IDL trisol).

> and we look for F.

Paolo

- > I used LA_LEAST_SQUARES (with all possible methods) for solve this
- > but it is slow and have memory problem. please note that most of A
- > matrix are zeros...

>

> Any ideas?