
Subject: problems with FFT cross spectra and other floating point operations
Posted by steve on Thu, 17 Dec 1992 03:09:46 GMT
View Forum Message <> Reply to Message

I am doing some image processing and I find that I get results which differ
drastically from those in Matlab. I am doing Fourier cross correlation
using phase-only filtering of video images. IDL gives floating underflow.
==> qf=af*conj(bf)/(abs(af)*abs(bf))
% Program caused arithmetic error: Floating underflow
% Program caused arithmetic error: Floating illegal operand
% Program caused arithmetic error: Zero / Zero

where af and bf are the fourier transforms of the two images.
I have C code that works, and Matlab code that works, but I get this error
in IDL.

I also noticed that when I subtract the DC from an image, and then do
an FFT, the element af(0,0) is not always zero. In fact, as the image
gets bigger, I get values further and further from zero. For a 256 by 265
image, the DC spike in the Fourier domain is so high that I can't see
anything else in shade_surf,abs(af) or tvscl,abs(af).

I wrote this little script which shows the accumulation of excess DC:
 -- --------------
; when I set N=91 or less, I get zero as expected.
; when I set N=92 or more, I get a non-zero DC value in fft.

N = 100; size of square array
q=findgen(N)#findgen(N); create some arbitrary square array
;Subtract the DC component
 w=float(q)-norm(q,/one)/float((size(q))(1))/float((size(q))(2))
wf = fft(w,1); Fourier transform of w
print,wf(0,0); The DC component should be zero now.
;I dont know why it is not zero.
 -- -------------

Perhaps this is due to a bug in IMSL/IDL?, and perhaps other versions
(e.g. Wave or RSI) don't suffer from this bug???

Could it have something to do with precision of numerical representation,
and if so, how do I represent complex double in IDL or Wave?

As a side note, I observe the following problems with simple numerical
computations. Have I overlooked something, or are these bugs?

==> print,double(10)^(-double(323))
 9.8813129e-324
;this is fine

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=9
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=464&goto=641#msg_641
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=641
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

==> print,double(10)^(-double(324))
 0.0000000
; no underflow warning is given

==> print,double(10)^(-double(999999999999999999999999999999999))
 10.000000
; no warning, and a strange answer results (should be zero)

; note that on the big side, things seem to be working ok:
==> print,double(10)^(double(308))
 1.0000000e+308
==> print,double(10)^(double(309))
 INF

; also when working with complex numbers, there appears to be a serious
; limitation, in the sense that the biggest real and imaginary parts are
; of single precision, yet complex double is the format of choice for
; most numerical work (e.g. Matlab)
==> print,complex(double(10)^(double(38)))
(1.00000e+38, 0.00000)
==> print,complex(double(10)^(double(39)))
(INF, 0.00000)
==> print,complex(double(10)^(-double(46)))
(0.00000, 0.00000)

Could this be the reason that IDL answers don't aggree with Matlab, C, or
Fortran answers?

Any help would be appreciated.

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

