## Subject: Re: How to represent the spatial distribution of a parameter Posted by Jeremy Bailin on Thu, 11 Dec 2008 15:34:42 GMT

View Forum Message <> Reply to Message

```
On Dec 10, 8:05 am, "Jean H." < ighas...@DELTHIS.ucalgary.ANDTHIS.ca>
wrote:
> Hi.
>
> I did something similar a while ago... here is part of it:
> newX = Xdata / CellSizeX
                              ;Agregate the data
> newY = Ydata / CellSizeY
>
> nbCol = ceil((maxX+1.0) / cellSizeX)
> nbRow = ceil((maxY+1.0) / cellSizeY)
> nPoint = n_elements(newX)
>
> image = lonarr(nbCol, nbRow)
> nbPointsXY = lonarr(nbCol, nbRow)
>
 for i = 0L, nPoint-1 do begin
     image[newX[i], newY[i]] += v[i]
>
     nbPointsXY[newX[i], newY[i]] += 1
  endfor
  image /= nbPointsXY ;do the average
>
 tvscl, image
>
> Jean
If there are on average lots of points per grid cell, it would be more
efficient to use the reverse indices in David's HIST ND:
histimage = hist_nd(transpose([[X],[Y]], [binX,binY], $
min=[minX,minY], max=[maxX,maxY], reverse_indices=hiri)
meanimage = fltarr(size(histimage,/dimen))
for i=01,n elements(histimage)-1 do if histimage[i] gt 0 then $
 meanimage[i] = mean(V[hiri[hiri[i]:hiri[i+1]-1]])
If performance is still a serious issue, you should go read
http://www.dfanning.com/code_tips/drizzling.html (it's effectively the
same thing - you just need to divide by histimage at the end). In
fact, go read it anyway - it's very illuminating. :-)=
-Jeremy.
```