Subject: Re: Approximate convolution - for loop problem
Posted by Jeremy Bailin on Wed, 24 Dec 2008 21:20:16 GMT

View Forum Message <> Reply to Message

On Dec 23, 9:27 pm, Jeremy Bailin <astroco...@gmail.com> wrote:

> On Dec 21, 3:01 pm, Sam <samuel.le...@gmail.com> wrote:

>

>

>

>> Hi David, unfortunately shift() does not do the business for me, as
>> these two examples below show. So I'm still a bit stumped here.
>

>> ; Array operation I'm trying to execute.

>> a=[1.,2.,3.,4.]

>> for ii=1,3 do aJii] += 0.5*a[ii-1]

>> print,a

>> 1.00000 2.50000 4.25000 6.12500

>

>> ; Attempt to perform this operation with shift()

>> a=[1.,2.,3.,4.]

>> a += 0.5*shift(a,-1)

>> print,a

>> 2.00000 3.50000 5.00000 4.50000

>

>> On Dec 21, 7:03 pm, David Fanning <n...@dfanning.com> wrote:
>

>>> samuel.le...@gmail.com writes:

>>>> Hello everyone, I'm trying to execute a 1-d convolution of an array,
>>>> gignal.

>

>>>> Using an analytic approximation, obtaining the convolved bolometer
>>>> gignal, bolo_signal, at time step ii, is given by the following:

>

>>>> nsamp=n_elements(signal)

>>>> constl = exp(-tsamp/taubolo)

>>>> const2 = 1.-constl

>

>>>> bolo_signal = const2*signal

>>>> for ii= 1L,nsamp-1L do begin

>>>> bolo_signalfii] += constl*bolo_signallii-1]

>>>> endfor

>

>>>> where tsamp and taubolo are scalars. Is there any way to avoid the for
>>>> |oop in this case? The hope is to speed up the execution.

>

>>> | think this gives you the same results:

>

>>> polo_signal += constl * shift(bolo_signal,-1)

Page 1 of 3 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=28131&goto=64452#msg_64452
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=64452
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>

>>>
>

>>>
>>>
>>>
>>>
>>>
>>>

a

VvV VVVYVYVYVYVYV

Cheers,

David

David Fanning, Ph.D.

Fanning Software Consulting, Inc.

Coyote's Guide to IDL Programming:http://www.dfanning.com/
Sepore ma de ni thui. ("Perhaps thou speakest truth.")

How about this:

=[1.,2.,3.,4.]

n = n_elements(a)

¢ = 0.5"reverse(indgen(n))

new_a = total(a*c, /cumulative) / ¢

-Jeremy.

Of course, there are issues. Here is a test that shows that it works
and is faster than the for loop:

pro test

n = 500l
seed =2

¢ = double(randomu(seed))
a = randomu(seed, n)

b=a

tl = systime(/sec)

for ii=1l,n-1 do a[ii] += ¢ * aJii-1]
t2 = systime(/sec)

print, 'For loop’, t2-t1

t3 = systime(/sec)

carray = c”reverse(indgen(n))

new_a = total(b*carray, /cumulative) / carray
t4 = systime(/sec)

print, 'total(/cumulative)’,t4-t3

print, 'Max deviation',max(abs(a-new_a))

end

Page 2 of 3 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

And here's what | get:

For loop 0.00079083443
total(/cumulative) 0.00019907951
Max deviation 7.1814603e-08

So a factor of 4 speed improvement. Of course, n=500 isn't that big,
and therein lies the problem. The code precomputes c*(n-1) and divides
by it... so as soon as you get a floating underflow in c(n-1), the
algorithm returns NaNs. If your n is so large that Wox's method (which
mine is obviously based on, to some degree) runs you out of memory,
then it's probably also so large that my method causes an underflow.
Anyone have any suggestions to get around that?

-Jeremy.

Page 3 of 3 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

