
Subject: Re: Duplicate lat/long points
Posted by mccreigh on Fri, 16 Jan 2009 19:55:29 GMT
View Forum Message <> Reply to Message

Helen-
I've written a routine to do something very similar to what you are
describing.
My problem, however may be significantly different (or not, depending
on if you are really giving the full details).
Basically, I identify unique station lons and lats. The *extremely*
complicating factor is that the same stations may be reported in 2
completely different precisions. For example 49N10' would not equal
49N10'15". But are these different stations or not? If you dont have
this tolerance problem, then, use hist_nd. If your data are regularly
spaced, and your hist not tremendously sparse then use hist_nd.
Otherwise you may need to consider what I've done. I tried to use
hist_nd in vein for this problem, so i thought it would be worth
sharing. My problem requires a tolerance factor, eg any two stations
separated by more than 1 minute are distinct. This translates into a
bin size in histogram or in hist_nd. Even if your tolerance is
relatively low (like 1 minute), the distance between any two points
makes the size of the implied grid huge, ie the sparsity of the
histogram output is overwhelming and you'll probably get and error.
That's because of how huge the earth is and the implied grid in the
histogram is massive with virtually no actual data on it. You have to
use long64 to even represent numbers if you want them to be non-
floating. It gets ugly, the problem is not a very clean one. It's one
more level of complication you may need to consider before trying
hist_nd. So hist_nd might not be the way to go, depending on how mesy
your problem is. I think a searching and matching routine like i've
used is much more practical for this described case. I posted my two
codes (from a quick scan, i couldnt see any other externals in the
programs, but there probably are, so just let me know on the side if i
need to post those as well):

http://cires.colorado.edu/~mccreigh/idl/
qa_identify_unique_stations.pro
qa_find_data_precision.pro

the first calls the second in the case that the user does not supply a
tolerance, in that case the second routine trys to find a default
tolerance in the data.

But, since I love hist_nd so much, I thought I'd try to share a quick
example like came up just the other day when I was sorting some dates.
But you really must/should study JD's histgram blub on David's site.
Afer that, to use hist_nd, you really only need read the header for
hist_nd.

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6338
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=28235&goto=64802#msg_64802
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=64802
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

IDL> a=[3,3,3,4] ; i guess you could think of these like dates -
day
IDL> b=[8,9,9,9] ; month
IDL> c=[10,10,10,12] ; year
IDL> in=[transpose(a),transpose(b),transpose(c)] ;note the required
form of the input for hist_nd
IDL> hist=hist_nd(in,1,rev=ri) ;binsize 1
IDL> p,hist
[*]
 1 0
 2 0

 0 0
 0 0

 0 0
 0 1

;; note the sparsity and structure - [2,2,3] is because 2 numbers span
variable1, 2 number span variable 2, 3 span the third
;; will illustrate the following reverse indices from the hist_nd
header (the trickiest part, make sure you read the hist primer)
;; ind=[i+nx*(j+ny*k)]
;; ri[ri[ind]:ri[ind+1]-1]

IDL> dims=size(hist,/dim)
;you'd typically do this inside a "for ... do begin" loop and not
store the coeffs and it would look so much
;; nicer! but since I'm working from command line...
IDL> inds=intarr(dims[0],dims[1],dims[2])
IDL> for i=0,dims[0]-1 do for j=0,dims[1]-1 do for k=0,dims[2]-1 do
inds[i,j,k]=i+dims[0]*(j+dims[1]*k)
IDL> for i=0,dims[0]-1 do for j=0,dims[1]-1 do for k=0,dims[2]-1 do if
ri[inds[i,j,k]+1]-1-ri[inds[i,j,k]] ge 0 then $
IDL> print,i,j,k,ri[ri[inds[i,j,k]]:ri[inds[i,j,k]+1]-1]
 0 0 0 0 ; this says
that hist [i,j,k]=[0,0,0] has and entry in the input array at 0
 0 1 0 1 2 ; this says
that hist [i,j,k]=[0,1,0] has and entries in the input array at [1,2]
 1 1 2 3 ; you
guessed it.

My only other routine in my code directory (variogram.pro) is a fancy
wrapper on hist_nd. Hist is multithreaded, so this routine can run
really well on a multiprocessor machine, one process will gladly take
around 4 cpus on the machine I use. That's why programmers love
histogram.

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

One last note, it may well be worth your while to ditch IDL for R,
unless you have serious memory requirements. R has way more libraries
and useful things available in general (from my experience). If you
dont have alot invested in IDL, I'd seriously consider R for a variety
of reasons (esp cause it's free). But IDL offers the satisfation of
writing your own programs in many cases!

Good luck, hope this is useful or at least reassuring if you've
already figured it out.

James

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

