Subject: Re: How to define resolution (not dimension!) for IDLanRoi->computeMask Posted by ben.bighair on Tue, 10 Feb 2009 13:26:00 GMT

View Forum Message <> Reply to Message

On Feb 10, 7:00 am, justspa...@yahoo.de wrote:

- > Still, if I may ask again: is anyone aware of the difference between
- > the 'location' and
- > the 'pixel_center' keyword of IDLanROI->computeMask?

>

Hi,

My assumption has always been that Location specifies the overall position of the mask and that Pixel_Center allows you to "jiggle" around that. The picture I have in my mind is of the old "quadrat mapping" from high school biology class. We staked out an area, randomly placed squares ("quadrats" 1 m^2) and then within each quadrat determined the average number ant hills (or something) per 10 cm^2. To me, "location" referred to the location of the quadrat relative to the study area and the "pixel_center" to the relative location of anthills within each quadrat.

But now that you have pressed the question, I am not at all sure that I have the right picture. I have a small example routine (see below) that shifts around location and pixel_center. I am pretty sure that pixel center determines the "filling" of pixels, much as described in the intro to PolyFillV. But, the more I look at the output the fuzzy my thinking gets. As I my story book hero (Freddy The Pig) says, "It's no use, thinking just confuses things."

For the benefit of all, I have pasted in the online descriptions of Location and Pixel_Center from IDLanROI::ComputeMask.

LOCATION

Set this keyword to a vector of the form [X, Y[, Z]] specifying the location of the origin of the mask. The default is [0, 0, 0]. IDL converts and maintains this value in double-precision floating-point.

PIXEL CENTER

Set this keyword to a 2-element vector, [x, y], to indicate where the lower-left mask pixel is centered relative to a Cartesian grid. The default value is [0.0, 0.0], indicating that the lower-left pixel is centered at [0.0, 0.0].

**** BEGIN pro loc_test

```
loc1 = [0,0]
 loc2 = [0,0]
 loc3 = [0,0]
 loc4 = [0,0]
 pc1 = [0,0]
 pc2 = [0.5, 0]
 pc3 = [1,0]
 pc4 = [-0.5,0]
 x = [2,2,3,3]
 y = [2,3,3,2]
 roi = OBJ_NEW('IDLanROI', x,y)
 print, "****** Constant Location, Varying Center *******"
 mask1 = roi->ComputeMask(Loc = loc1, Pixel_Center = pc1, DIM =
[5,5]
 mask2 = roi->ComputeMask(Loc = loc2, Pixel_Center = pc2, DIM =
[5,5]
 mask3 = roi->ComputeMask(Loc = loc3, Pixel_Center = pc3, DIM =
[5,5]
 mask4 = roi->ComputeMask(Loc = loc4, Pixel_Center = pc4, DIM =
[5,5]
 print, "Pixel_Center = ", pc1
 print, "Location = ", loc1
 print, mask1
 print, "Pixel_Center = ", pc2
 print, "Location = ", loc2
 print, mask2
 print, "Pixel_Center = ", pc3
 print, "Location = ", loc3
 print, mask3
 print, "Pixel Center = ", pc4
 print, "Location = ", loc4
 print, mask4
 print, "****** Constant Center, Varying Location *******"
 loc1 = [0,0]
 loc2 = [0.5,0]
 loc3 = [1,0]
 loc4 = [2,0]
```

```
pc1 = [0,0]
 pc2 = [0,0]
 pc3 = [0,0]
 pc4 = [0,0]
 mask1 = roi->ComputeMask(Loc = loc1, Pixel_Center = pc1, DIM =
[5,5]
 mask2 = roi->ComputeMask(Loc = loc2, Pixel_Center = pc2, DIM =
[5,5]
 mask3 = roi->ComputeMask(Loc = loc3, Pixel_Center = pc3, DIM =
[5,5]
 mask4 = roi->ComputeMask(Loc = loc4, Pixel_Center = pc4, DIM =
[5,5]
 print, "Pixel_Center = ", pc1
 print, "Location = ", loc1
 print, mask1
 print, "Pixel_Center = ", pc2
 print, "Location = ", loc2
 print, mask2
 print, "Pixel_Center = ", pc3
 print, "Location = ", loc3
 print, mask3
 print, "Pixel_Center = ", pc4
 print, "Location = ", loc4
 print, mask4
end
***** END
```