Subject: Re: majority voting Posted by Allan Whiteford on Thu, 12 Feb 2009 12:17:18 GMT View Forum Message <> Reply to Message

```
mort canty wrote:
> Hi all,
>
  Given a 2-D array such as
       0
                        2
                              1
>
            2
                        1
       0
                  1
                              1
>
                  2
       1
            0
                        2
                              1
> where the entries are labels, the columns represent items and the rows
> are voters, I want a IDL function that returns the majority vote labels.
> So here I should get
> 0 ? 1 2 1
> as output, where ? = "don't care". There must _not_ be a loop over
> columns. I've got a clumsy solution, but I'm sure there's an elegant one
> somewhere?
> Cheers.
> Mort
Hi Mort,
It might be less efficient than JD's histogram solution (I didn't check)
but the following also fits the problem specification:
x=[[0,1,1,2,1],
[0,2,1,1,1],$
[1,0,2,2,1]]
voters=(size(x,/dim))[1]
items=(size(x,/dim))[0]
max_label=max(x)+1
f=intarr(max label,items)
++f[max_label*(indgen(voters*items) / voters)+ $
   reform(transpose(x),voters*items)]
junk=max(f,idx,dim=1)
```

Note that the above solution will also blow up when you end up with sparse arrays (e.g. if you have someone voting for label 1000000 then f

print,idx - max_label*findgen(items)

will end up being an items x 1000000 array even if nobody votes for any labels between 3 and 1000000).

I think all the discussions on finding the mode (either in 1D or nD) probably pre-dated the ++ operator. It could be that using the vectorised ++ operator is a better way to do it - I doubt it though, normally if histogram can do something then histogram will be the best way! You'd also need to introduce a clumsy offset to deal with negative selections (Not an issue for you here but would be if finding the mode in a more general way).

It would make David's 1D example from his webpage into something like this:

```
array = [1, 1, 2, 4, 1, 3, 3, 2, 4, 5, 3, 2, 2, 1, 2, 6,-3]
f=intarr(max(array)-min(array)+1)
f[array-min(array)]++
junk=max(f,idx)
mode=idx + min(array)
print,mode
```

again, with no idea on what would be more efficient. If you're doing analysis on measurements (typically non-integers) then you'd need to invoke histogram anyway to bin them before trying to find the mode.

Thanks,

Allan