Subject: Re: Fourier analysis of the Data with some gaps Posted by R.G. Stockwell on Mon, 13 Apr 2009 16:10:35 GMT

View Forum Message <> Reply to Message

"Kenneth P. Bowman" <k-bowman@null.edu> wrote in message news:k-bowman-5F7B9B.10442113042009@news.tamu.edu...

- > In article
- > <7cfa22f4-1133-48a1-9562-a84a0d932a6e@i28g2000prd.googlegroups.com>,
- > "duxiyu@gmail.com" <duxiyu@gmail.com> wrote:

>

>> Dear all,

>>

- >> I want to take FFT on the data.
- >> But there are some shorts data gaps during this data interval.
- >> How should I deal with these gaps?

>>

>> Best regards,

>>

>> jdu

>

- > This is a very general question and there is no unique answer. You
- > need to be aware of the characteristics of the data.

I agree, and would go a bit further. There is no unique answer, and no good answer.

> You can interpolate to fill the gaps. (Many methods.)

This is fine if the gaps are not too common, or too large.

> You can use least-squares instead of FFT.

The Lomb Scargle technique is often misused in this case.

It does a fit of a _single_ sinusoid, and calculates the significance of it. It should not be used to calculate the spectrum (which of course is exactly what the Numerical Recipe book does).

An actual least squares fit to all the fourier components, where there is gappy data, is almost always an ill posed matrix. The sinusoids are orthogonal

with regular sampling, but when you remove a point in the time series, those sinusoids are no longer orthogonal.

Perhaps a local spectral technique would be appropriate, which gives one the spectrum where there is data, and gaps where there are gaps.

Cheers, bob