
Subject: Re: match_2d
Posted by Jeremy Bailin on Fri, 24 Apr 2009 17:50:38 GMT
View Forum Message <> Reply to Message

On Apr 23, 8:10 am, vino <astrocr...@gmail.com> wrote:
> Hi Jeremy!!
>
> Thank you very much for helping me out....It works very well with my
> data set...
> For me to be able to use this routine is going to save me about a
> couple of weeks of runtime in my program!!
>
> I have looked at WITHINSPHRAD but in that case, i still need to have
> a loop which is what i was trying to avoid!!
>
> Thanks to J.D.Smith for giving us a boon with routines like this!! (i
> will someday learn how to use histogram)..
>
> Regards,
>
> Vino
>
> On Apr 22, 11:39 pm, JDS <jdtsmith.nos...@yahoo.com> wrote:
>
>>> Aha... I've looked at it in gory detail, and it turns out that the
>>> routine implicitly assumes that the minimum value of both x2 and y2
>>> are 0. So you can get it to work if you do the following:
>
>> Aha! Thanks for the catch. That's what you get when you evaluate an
>> algorithm on artificial random coordinates ranging uniformly from
>> [0,1].
>
>> I've updated MATCH_2D at the address mentioned to handle this issue
>> explicitly, and also catch cases of matching points which fall just
>> slightly outside the bounding box of the search set. I've also added
>> a much-needed warning regarding using this Euclidean matching
>> algorithm for points on the sphere (e.g. star positions, lat/lon,
>> etc.):
>
>> ; WARNING:
>> ;
>> ; Distance is evaluated in a strict Euclidean sense. For
>> ; points on a sphere, the distance between two given
>> ; coordinates is *not* the Euclidean distance. As an extreme
>> ; example, consider two points very near the N. pole, but on
>> ; opposite sides (one due E, one due W). For small patches,
>> ; this Euclidean assumption is approximately valid, and the
>> ; method works. See NOTES above for a tip regarding obtaining

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=28761&goto=66270#msg_66270
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=66270
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> ; a (more) uniform match criterion on the sphere.
>> ;;
>
>> Give this version a try. By the way, the value of MATCH_DISTANCE for
>> points which did *not* match is not meaningful.
>
>> JD
>
>

That, of course, is a challenge. ;-) Try this version, which will
allow you to do many-to-many matches:

 http://www.physics.mcmaster.ca/~bailinj/idl/withinsphrad_vec .pro

It uses the "throw lots of memory at the problem" paradigm (it
internally uses several N1 x N2 arrays simultaneously), so you may
find that it runs out of memory fairly quickly. If it's a problem, you
can always try chunking up your coordinates and doing a FOR loop
through the chunks - it should at least be faster than looping through
each coordinate.

I'm pretty sure there's a HIST_ND-based algorithm of doing this
similar to MATCH_2D but taking spherical trig into account, but I
don't have the patience to figure it out.

-Jeremy.

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

