
Subject: Re: match_2d
Posted by Jeremy Bailin on Thu, 30 Apr 2009 00:00:30 GMT
View Forum Message <> Reply to Message

On Apr 29, 7:30 pm, Jeremy Bailin <astroco...@gmail.com> wrote:
> On Apr 29, 4:29 pm, JDS <jdtsmith.nos...@yahoo.com> wrote:
>
>
>
>> On Apr 28, 10:44 pm, Jeremy Bailin <astroco...@gmail.com> wrote:
>
>>> On Apr 27, 3:06 pm, JDS <jdtsmith.nos...@yahoo.com> wrote:
>
>>>> > I'm pretty sure there's a HIST_ND-based algorithm of doing this
>>>> > similar toMATCH_2Dbut taking spherical trig into account, but I
>>>> > don't have the patience to figure it out.
>
>>>> That would be challenging for the whole sphere, since histogram can
>>>> only evaluate monotonic coordinate fields. You can always first remap
>>>> your coordinates using some projection which puts the ill-behaved
>>>> parts (nominally, the poles) far away, and preserves distance
>>>> locally. For example, if you have a small field (a degree or so) near
>>>> the pole, this would be a nice way of solving the converging longitude
>>>> lines issues. But generally? Sounds tough.
>
>>>> JD
>
>>> How about if it was done in 3D? Instead of 2D angular coordinates, use
>>> the 3D coordinates of the relevant points on the surface of a unit
>>> sphere, and then use HIST_ND to determine which 3D bin the points are
>>> in and build the algorithm analogously to MATCH_2D?
>
>>> The main problem I see is that, for small bin sizes (ie. small desired
>>> angular separations), there's a lot of wasted memory storing the
>>> histogram in locations that don't lie on the surface of the sphere and
>>> therefore are necessarily zero. But maybe there's a way of enumerating
>>> the bins that do contain part of the surface - if so, then you could
>>> use that enumeration to map the 3D positions into a simple number that
>>> you can run HISTOGRAM on.
>
>> I thought of that and rejected it for the reason you mention. The
>> vast majority of memory would be devoted to empty volume, and as the
>> resolution grew, the fraction of wasted memory would grow as well.
>> The mapping you describe to do away with the empty space is equivalent
>> to spherical projection, for which there is no unique mapping for the
>> whole sphere. One possibility would be to project iteratively,
>> forming low distortion projections over the sphere to push the poles
>> off out of the way, matching against a subset of the data, rotate the

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=28771&goto=66358#msg_66358
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=66358
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> projection, repeat. Some heuristic for deciding which projection, how
>> large, and where to center it, would be needed.
>
>> At some point, it would become simpler to use pattern matching via
>> Delauney triangulation or other patterns formed from the target list.
>
>> JD
>
> One idea to at least limit the amount of wasted memory is to use a
> larger grid spacing than absolutely required - the match_2d algorithm
> needs grid spacings that are no smaller than 2x the desired
> separation, but I think it should work fine if the spacing is
> larger... the drawback would be that you need to calculate the correct
> angular distance for a larger number of particles than strictly
> necessary, but that would be a worthwhile tradeoff at some point.
>
> But I think that there should be an enumeration mapping solution.
> There certainly exists an enumeration for any grid size... I can
> generate one by placing points randomly on the surface of the sphere,
> calculating the 3D histogram, and then getting a list of which cells
> contain points - the enumeration is then simply be the ordinal of the
> cell within the list. But that's a stupid solution in this case,
> because the entire point is to avoid calculating the full 3D
> histogram. Still, the fact that an enumeration is possible makes me
> think that it should be possible to generate it from first principles
> rather than empirically. :-)=
>
> -Jeremy.

Now that I think about it, you can use the random points directly to
get the grid cells without going via the histogram - just calculate
the bin each one would fall into, and UNIQ them. You just need to
generate enough points that you're virtually guaranteed to get a hit
in each bin. You could guarantee it by also including every neighbour
of any grid cell that contains a point - that way even a cell that
only has a sliver of surface pass through it and therefore does not
contain a point will get into the list.

Hmmm... okay, I'm going to code that up and see if it works.

-Jeremy.

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

