
Subject: Re: match_2d
Posted by Jeremy Bailin on Wed, 29 Apr 2009 23:30:02 GMT
View Forum Message <> Reply to Message

On Apr 29, 4:29 pm, JDS <jdtsmith.nos...@yahoo.com> wrote:
> On Apr 28, 10:44 pm, Jeremy Bailin <astroco...@gmail.com> wrote:
>
>
>
>> On Apr 27, 3:06 pm, JDS <jdtsmith.nos...@yahoo.com> wrote:
>
>>>> I'm pretty sure there's a HIST_ND-based algorithm of doing this
>>>> similar toMATCH_2Dbut taking spherical trig into account, but I
>>>> don't have the patience to figure it out.
>
>>> That would be challenging for the whole sphere, since histogram can
>>> only evaluate monotonic coordinate fields. You can always first remap
>>> your coordinates using some projection which puts the ill-behaved
>>> parts (nominally, the poles) far away, and preserves distance
>>> locally. For example, if you have a small field (a degree or so) near
>>> the pole, this would be a nice way of solving the converging longitude
>>> lines issues. But generally? Sounds tough.
>
>>> JD
>
>> How about if it was done in 3D? Instead of 2D angular coordinates, use
>> the 3D coordinates of the relevant points on the surface of a unit
>> sphere, and then use HIST_ND to determine which 3D bin the points are
>> in and build the algorithm analogously to MATCH_2D?
>
>> The main problem I see is that, for small bin sizes (ie. small desired
>> angular separations), there's a lot of wasted memory storing the
>> histogram in locations that don't lie on the surface of the sphere and
>> therefore are necessarily zero. But maybe there's a way of enumerating
>> the bins that do contain part of the surface - if so, then you could
>> use that enumeration to map the 3D positions into a simple number that
>> you can run HISTOGRAM on.
>
> I thought of that and rejected it for the reason you mention. The
> vast majority of memory would be devoted to empty volume, and as the
> resolution grew, the fraction of wasted memory would grow as well.
> The mapping you describe to do away with the empty space is equivalent
> to spherical projection, for which there is no unique mapping for the
> whole sphere. One possibility would be to project iteratively,
> forming low distortion projections over the sphere to push the poles
> off out of the way, matching against a subset of the data, rotate the
> projection, repeat. Some heuristic for deciding which projection, how
> large, and where to center it, would be needed.

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=28771&goto=66361#msg_66361
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=66361
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> At some point, it would become simpler to use pattern matching via
> Delauney triangulation or other patterns formed from the target list.
>
> JD

One idea to at least limit the amount of wasted memory is to use a
larger grid spacing than absolutely required - the match_2d algorithm
needs grid spacings that are no smaller than 2x the desired
separation, but I think it should work fine if the spacing is
larger... the drawback would be that you need to calculate the correct
angular distance for a larger number of particles than strictly
necessary, but that would be a worthwhile tradeoff at some point.

But I think that there should be an enumeration mapping solution.
There certainly exists an enumeration for any grid size... I can
generate one by placing points randomly on the surface of the sphere,
calculating the 3D histogram, and then getting a list of which cells
contain points - the enumeration is then simply be the ordinal of the
cell within the list. But that's a stupid solution in this case,
because the entire point is to avoid calculating the full 3D
histogram. Still, the fact that an enumeration is possible makes me
think that it should be possible to generate it from first principles
rather than empirically. :-)=

-Jeremy.

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

