
Subject: Re: Is a dynamically sized pointer array object component possible?
Posted by Paul Van Delst[1] on Fri, 22 May 2009 13:30:53 GMT
View Forum Message <> Reply to Message

mgalloy wrote:
> Paul van Delst wrote:
>> Hello,
>>
>> I'm trying to create an object with a component that is a pointer
>> array... but I don't know the size of the array ahead of time. In
>> structure-speak, I'm doing this:
>>
>> IDL> x={blah,y:ptr_new()}
>> IDL> x.y=ptr_new(ptrarr(4))
>> IDL> (*x.y)[0] = ptr_new(dindgen(20))
>> IDL> help, *(*x.y)[0]
>> <PtrHeapVar1> DOUBLE = Array[20]
>>
>> Now, if I knew what size of array I needed in advance (in this
>> example, 4), I could do the following:
>>
>> IDL> x={blah,y:ptrarr(4)}
>> IDL> x.y[0] = ptr_new(dindgen(20))
>> IDL> help, *x.y[0]
>> <PtrHeapVar1> DOUBLE = Array[20]
>>
>> The latter example is preferable since
>> a) it more closely reflect the data, and
>> b) the dereferencing is clearer.
>>
>> I tried to do this:
>>
>> IDL> x={blah,y:ptr_new()}
>> IDL> x.y = ptrarr(4)
>> % Expression must be a scalar in this context: <POINTER Array[4]>.
>> % Execution halted at: $MAIN$
>>
>> I (mostly) knew it wouldn't work, but is there a way to do this?
>> Having a pointer to a pointer array I find..... disconcerting.
>>
>> In the final application I would have the following procedure,
>>
>> PRO blah__define
>> void = { blah, y:some_fancy_definition?.... }
>> END
>>
>> and then do something like,
>>

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4285
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=28916&goto=66531#msg_66531
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=66531
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> PRO blah::allocate, n
>> self.y = PTRARR(N_ELEMENTS(n)) ; This causes the heartache.
>> FOR i = 0, N_ELEMENTS(n)-1 DO BEGIN
>> self.y[i] = PTR_NEW(DBLARR(n[i]))
>> ENDFOR
>> END
>>
>> to be called thusly:
>>
>> x = obj_new('blah')
>> x->allocate([2,5,9,25])
>>
>> Is it doable? Am I missing another simple fix (ala the
>> FORMAT_AXIS_VALUES function from a previous thread :o) I would like
>> to avoid the double dereferencing if possible.
>>
>> Hopefully I've explained myself. Thanks for making it this far.
>>
>> cheers,
>>
>> paulv
>
> How about creating a pointer to a pointer array?

Hi Mike,

That's what my first example above does (it was the only way I could make it work). I was
trying to avoid that if possible to avoid the double dereferencing that would require in
the object methods - as in your "get" and "set" method:

> function blah::get, m, n
> compile_opt strictarr
>
> return, (*(*self.y)[m])[n]
> end
>
> pro blah::set, m, n, value
> compile_opt strictarr
>
> (*(*self.y)[m])[n] = value
> end

And that is what I am doing now in my code. For example, my "set" method does

 *(*self.Frequency)[_Band] = Frequency
 *(*self.Response)[_Band] = Response

(where Frequency and Response are vectors.[*])

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

I just wanted to avoid the *(*.self.y) double dereference (DD) if possible. It has zero
impact on the user, of course - I want to avoid the DDing for my own benefit (insert
sheepish grin here)

Thanks for taking the time to write the code. It's a nice teaching example.

cheers,

paulv

[*] BTW, note also my use of "_Band". I have now adopted your methodology for things like,

 ; Check band keyword argument
 IF (N_ELEMENTS(Band) GT 0) THEN _Band = LONG(Band[0])-1 ELSE _Band = 0L

based on your post a few days ago. I've noticed that these type of small, incremental
changes to create more robust code (like the snippet above) eventually leads to shifts in
other people's perceptions about writing clean code (e.g. no side effects). Nothing earth
shattering in this little post scriptum, of course, but still neato.

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

