
Subject: Re: yet another idl memory question
Posted by Karl[1] on Thu, 04 Jun 2009 20:06:28 GMT
View Forum Message <> Reply to Message

On Jun 4, 11:06 am, David Fanning <n...@dfanning.com> wrote:
>  Jean H. writes:
>>  in which case you may want to save the
>>  variable(s) to a file, free the memory (data=0B) and start processing
>>  the next file.
> 
>  Of course, data=0B doesn't free *all* the memory,
>  and doing this many times leads, I suspect, to the memory
>  fragmentation that is the heart of the problem. I suggest
>  you use UNDEFINE. That really does release *all* the memory
>  associated with a variable. And it elegantly indicates
>  what the code is actually doing, too, a significant
>  advantage for people reading your code after you have
>  run off to the tropics with that hot financial analyst
>  over in the head shed. :-)
> 
>    http://www.dfanning.com/programs/undefine.pro
> 
>  Cheers,
> 
>  David
> 
>  --
>  David Fanning, Ph.D.
>  Coyote's Guide to IDL Programming (www.dfanning.com)
>  Sepore ma de ni thui. ("Perhaps thou speakest truth.")

I'm not sure that's the explanation.  IDL variables consist of a small
(about 40 bytes) structure.  If the variable has a dynamic part, as in
arrays, the dynamic part is allocated separately and the pointer
placed in the IDL variable structure.  data=0B just frees the dynamic
part.  Further, I think that the variable structures are allocated in
groups (pools) so that IDL does not have to constantly alloc and free
these small structures as variables activate and deactivate.  So, an
undefine will probably just put the variable back into a pool, with no
storage impacts at all.

Fragmentation could be the issue, if the right pattern of dynamic
allocations and frees exist.  But given that this is on 64-bit Linux,
I rather doubt it, as the virtual address space is huge and would be
difficult to fragment with 750MB blocks in "a few iterations".

To the OP:

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5533
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=28983&goto=66687#msg_66687
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=66687
http://idlcoyote.com/comp.lang.idl-pvwave/index.php


Who is actually allocating the memory?  OpenDAP?  Or your IDL
application?

As mentioned before, be sure you are freeing the memory before the
next iteration.  Regardless of who allocates it, leaving it unfreed
will probably bump you up against your process size limit in Linux.

Does OpenDAP allow you to pass in a variable that you have defined/
allocated yourself?  You seem to imply that that this is possible
since you mention creating your own pointer vars, etc.  Are you sure
that OpenDAP is actually using the block you pass in and not
allocating a new one anyway?

I think you are on the right track for the ideal solution.  You want
to determine the required size and allocate the block once.  Then
convince OpenDAP to use it to store the data, and then just keep
reusing it.  You are fortunate here in that the data size does not
change.  If it were variable, you'd either have to alloc a worst-case
block and live with that or possibly suffer fragmentation issues by
allocing/freeing each time.

I think that the key to the answer is determining how OpenDAP allocs
this memory and how to convince it to reuse the same block.  And you'd
need to know more about OpenDAP to determine all of that.  Sorry, I
don't know much about it.

Karl

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

